Articles producció científica> Química Física i Inorgànica

Exploring the self-assembly of dumbbell-shaped polyoxometalate hybrids, from molecular building units to nanostructured soft materials

  • Identification data

    Identifier: imarina:9138836
    Authors:
    Centellas MSPiot MSalles RProust ATortech LBrouri DHupin SAbécassis BLandy DBo CIzzet G
    Abstract:
    © The Royal Society of Chemistry. The formation of hierarchical nanostructures using preformed dumbbell-like species made of covalent organic-inorganic polyoxometalate (POM)-based hybrids is herein described. In this system, the presence of charged subunits (POM, metal linkers, and counter ions) in the complex molecular architecture can drive their aggregation, which results from a competition between the solvation energy of the discrete species and intermolecular electrostatic interactions. We show that the nature of the POM and the charge of the metal linker are key parameters for the hierarchical nanoorganization. The experimental findings were corroborated with a computational investigation combining DFT and molecular dynamics simulation methods, which outlines the importance of solvation of the counter ion and POM/counter ion association in the aggregation process. The dumbbell-like species can also form gels, in the presence of a poorer solvent, displaying similar nanoorganization of the aggregates. We show that starting from the designed molecular building units whose internal charges can be controlled by redox trigger we can achieve their implementation into soft nanostructured materials through the control of their supramolecular organization.
  • Others:

    Author, as appears in the article.: Centellas MS; Piot M; Salles R; Proust A; Tortech L; Brouri D; Hupin S; Abécassis B; Landy D; Bo C; Izzet G
    Department: Química Física i Inorgànica
    URV's Author/s: Bo Jané, Carles
    Abstract: © The Royal Society of Chemistry. The formation of hierarchical nanostructures using preformed dumbbell-like species made of covalent organic-inorganic polyoxometalate (POM)-based hybrids is herein described. In this system, the presence of charged subunits (POM, metal linkers, and counter ions) in the complex molecular architecture can drive their aggregation, which results from a competition between the solvation energy of the discrete species and intermolecular electrostatic interactions. We show that the nature of the POM and the charge of the metal linker are key parameters for the hierarchical nanoorganization. The experimental findings were corroborated with a computational investigation combining DFT and molecular dynamics simulation methods, which outlines the importance of solvation of the counter ion and POM/counter ion association in the aggregation process. The dumbbell-like species can also form gels, in the presence of a poorer solvent, displaying similar nanoorganization of the aggregates. We show that starting from the designed molecular building units whose internal charges can be controlled by redox trigger we can achieve their implementation into soft nanostructured materials through the control of their supramolecular organization.
    Thematic Areas: Química Materiais Interdisciplinar General chemistry Farmacia Ciências biológicas iii Ciências biológicas i Chemistry, multidisciplinary Chemistry (miscellaneous) Chemistry (all) Astronomia / física
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    Author's mail: carles.bo@urv.cat
    Author identifier: 0000-0001-9581-2922
    Record's date: 2023-02-19
    Papper version: info:eu-repo/semantics/publishedVersion
    Link to the original source: https://pubs.rsc.org/en/content/articlelanding/2020/sc/d0sc03243c
    Papper original source: Chemical Science. 11 (40): 11072-11080
    APA: Centellas MS; Piot M; Salles R; Proust A; Tortech L; Brouri D; Hupin S; Abécassis B; Landy D; Bo C; Izzet G (2020). Exploring the self-assembly of dumbbell-shaped polyoxometalate hybrids, from molecular building units to nanostructured soft materials. Chemical Science, 11(40), 11072-11080. DOI: 10.1039/d0sc03243c
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Article's DOI: 10.1039/d0sc03243c
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2020
    Publication Type: Journal Publications
  • Keywords:

    Chemistry (Miscellaneous),Chemistry, Multidisciplinary
    Química
    Materiais
    Interdisciplinar
    General chemistry
    Farmacia
    Ciências biológicas iii
    Ciências biológicas i
    Chemistry, multidisciplinary
    Chemistry (miscellaneous)
    Chemistry (all)
    Astronomia / física
  • Documents:

  • Cerca a google

    Search to google scholar