Articles producció científica> Enginyeria Informàtica i Matemàtiques

Virus spread versus contact tracing: Two competing contagion processes

  • Identification data

    Identifier: imarina:9173252
    Authors:
    Reyna-Lara, AdrianaSoriano-Panos, DavidGomez, SergioGranell, ClaraMatamalas, Joan TSteinegger, BenjaminArenas, AlexGomez-Gardenes, Jesus
    Abstract:
    After the blockade that many nations suffered to stop the growth of the incidence curve of COVID-19 during the first half of 2020, they face the challenge of resuming their social and economic activity. The rapid airborne transmissibility of SARS-CoV-2, and the absence of a vaccine, calls for active containment measures to avoid the propagation of transmission chains. The best strategy to date, popularly known as test-track-treat (TTT), consists in testing the population for diagnosis, tracking the contacts of those infected, and treating by quarantine all these cases. The dynamical process that better describes the combined action of the former mechanisms is that of a contagion process that competes with the spread of the pathogen, cutting off potential contagion pathways. Here we propose a compartmental model that couples the dynamics of the infection with the contact tracing and isolation of cases. We develop an analytical expression for the effective case reproduction number R-c(t) that reveals the role of contact tracing in the mitigation and suppression of the epidemics. We show that there is a trade-off between the infection propagation and the isolation of cases. If the isolation is limited to symptomatic individuals only, the incidence curve can be flattened but not bent. However, if contact tracing is applied to asymptomatic individuals too, the strategy can bend the curve and suppress the epidemics. Quantitative results are dependent on the network topology. We quantify the most important indicator of the effectiveness of contact tracing, namely, its capacity to reverse the increasing tendency of the epidemic curve, causing its bending.
  • Others:

    Author, as appears in the article.: Reyna-Lara, Adriana; Soriano-Panos, David; Gomez, Sergio; Granell, Clara; Matamalas, Joan T; Steinegger, Benjamin; Arenas, Alex; Gomez-Gardenes, Jesus
    Department: Enginyeria Informàtica i Matemàtiques
    URV's Author/s: Arenas Moreno, Alejandro / Gómez Jiménez, Sergio / GÓMEZ RONCAL, SAIOA / Granell Martorell, Clara / Matamalas Llodrà, Joan Tomàs / Steinegger, Benjamin Franz Josef
    Keywords: Viruses Transmission chains Reproduction numbers Quantitative result Network topology Economics Economic and social effects Economic activities Dynamical process Diseases Disease control Covid-19 Compartmental model Cell proliferation Analytical expressions
    Abstract: After the blockade that many nations suffered to stop the growth of the incidence curve of COVID-19 during the first half of 2020, they face the challenge of resuming their social and economic activity. The rapid airborne transmissibility of SARS-CoV-2, and the absence of a vaccine, calls for active containment measures to avoid the propagation of transmission chains. The best strategy to date, popularly known as test-track-treat (TTT), consists in testing the population for diagnosis, tracking the contacts of those infected, and treating by quarantine all these cases. The dynamical process that better describes the combined action of the former mechanisms is that of a contagion process that competes with the spread of the pathogen, cutting off potential contagion pathways. Here we propose a compartmental model that couples the dynamics of the infection with the contact tracing and isolation of cases. We develop an analytical expression for the effective case reproduction number R-c(t) that reveals the role of contact tracing in the mitigation and suppression of the epidemics. We show that there is a trade-off between the infection propagation and the isolation of cases. If the isolation is limited to symptomatic individuals only, the incidence curve can be flattened but not bent. However, if contact tracing is applied to asymptomatic individuals too, the strategy can bend the curve and suppress the epidemics. Quantitative results are dependent on the network topology. We quantify the most important indicator of the effectiveness of contact tracing, namely, its capacity to reverse the increasing tendency of the epidemic curve, causing its bending.
    Thematic Areas: Physics, multidisciplinary Physics and astronomy (miscellaneous) Physics and astronomy (all)
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    Author's mail: joantomas.matamalas@urv.cat saioa.gomez@urv.cat clara.granell@urv.cat benjamin.steinegger@estudiants.urv.cat sergio.gomez@urv.cat alexandre.arenas@urv.cat
    Author identifier: 0000-0002-7563-9269 0000-0002-0723-1536 0000-0003-1820-0062 0000-0003-0937-0334
    Record's date: 2024-09-28
    Papper version: info:eu-repo/semantics/publishedVersion
    Link to the original source: https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.013163
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Papper original source: Physical Review Research. 3 (1): 013163-
    APA: Reyna-Lara, Adriana; Soriano-Panos, David; Gomez, Sergio; Granell, Clara; Matamalas, Joan T; Steinegger, Benjamin; Arenas, Alex; Gomez-Gardenes, Jesus (2021). Virus spread versus contact tracing: Two competing contagion processes. Physical Review Research, 3(1), 013163-. DOI: 10.1103/PhysRevResearch.3.013163
    Article's DOI: 10.1103/PhysRevResearch.3.013163
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2021
    Publication Type: Journal Publications
  • Keywords:

    Physics and Astronomy (Miscellaneous),Physics, Multidisciplinary
    Viruses
    Transmission chains
    Reproduction numbers
    Quantitative result
    Network topology
    Economics
    Economic and social effects
    Economic activities
    Dynamical process
    Diseases
    Disease control
    Covid-19
    Compartmental model
    Cell proliferation
    Analytical expressions
    Physics, multidisciplinary
    Physics and astronomy (miscellaneous)
    Physics and astronomy (all)
  • Documents:

  • Cerca a google

    Search to google scholar