Articles producció científica> Química Física i Inorgànica

Structured laser beams: toward 2-mu m femtosecond laser vortices

  • Identification data

    Identifier: imarina:9177894
    Authors:
    Zhao, YongguangWang, LiChen, WeidongLoiko, PavelMateos, XavierXu, XiaodongLiu, YingShen, DeyuanWang, ZhengpingXu, XinguangGriebner, UwePetrov, Valentin
    Abstract:
    Structured ultrashort-pulse laser beams, and in particular eigenmodes of the paraxial Helmholtz equation, are currently extensively studied for novel potential applications in various fields, e.g., laser plasma acceleration, attosecond science, and fine micromachining. To extend these prospects further, in the present work we push forward the advancement of such femtosecond structured laser sources into the 2-mu m spectral region. Ultrashortpulse Hermite- and Laguerre-Gaussian laser modes both with a pulse duration around 100 fs are successfully produced from a compact solid-state laser in combination with a simple single-cylindrical-lens converter. The negligible beam astigmatism, the broad optical spectra, and the almost chirp-free pulses emphasize the high reliability of this laser source. This work, as a proof of principle study, paves the way toward few-cycle pulse generation of optical vortices at 2 mu m. The presented light source can enable new research in the fields of interaction with organic materials, next generation optical detection, and optical vortex infrared supercontinuum. (C) 2021 Chinese Laser Press
  • Others:

    Author, as appears in the article.: Zhao, Yongguang; Wang, Li; Chen, Weidong; Loiko, Pavel; Mateos, Xavier; Xu, Xiaodong; Liu, Ying; Shen, Deyuan; Wang, Zhengping; Xu, Xinguang; Griebner, Uwe; Petrov, Valentin;
    Department: Química Física i Inorgànica
    URV's Author/s: Mateos Ferré, Xavier
    Keywords: Vortex flow Ultrashort pulses Structured laser Solid state lasers Pulses Proof of principles Plasma interactions Organic materials Orbital angular-momentum Optical vortices Optical detection Modes Light Laser-plasma acceleration Laser produced plasmas High reliability Generation Gaussian beams Femtosecond lasers Attosecond science Acceleration
    Abstract: Structured ultrashort-pulse laser beams, and in particular eigenmodes of the paraxial Helmholtz equation, are currently extensively studied for novel potential applications in various fields, e.g., laser plasma acceleration, attosecond science, and fine micromachining. To extend these prospects further, in the present work we push forward the advancement of such femtosecond structured laser sources into the 2-mu m spectral region. Ultrashortpulse Hermite- and Laguerre-Gaussian laser modes both with a pulse duration around 100 fs are successfully produced from a compact solid-state laser in combination with a simple single-cylindrical-lens converter. The negligible beam astigmatism, the broad optical spectra, and the almost chirp-free pulses emphasize the high reliability of this laser source. This work, as a proof of principle study, paves the way toward few-cycle pulse generation of optical vortices at 2 mu m. The presented light source can enable new research in the fields of interaction with organic materials, next generation optical detection, and optical vortex infrared supercontinuum. (C) 2021 Chinese Laser Press
    Thematic Areas: Optics Electronic, optical and magnetic materials Atomic and molecular physics, and optics
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    Author's mail: xavier.mateos@urv.cat
    Author identifier: 0000-0003-1940-1990
    Record's date: 2024-07-27
    Papper version: info:eu-repo/semantics/publishedVersion
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Papper original source: Photonics Research. 9 (3): 357-363
    APA: Zhao, Yongguang; Wang, Li; Chen, Weidong; Loiko, Pavel; Mateos, Xavier; Xu, Xiaodong; Liu, Ying; Shen, Deyuan; Wang, Zhengping; Xu, Xinguang; Griebner (2021). Structured laser beams: toward 2-mu m femtosecond laser vortices. Photonics Research, 9(3), 357-363. DOI: 10.1364/PRJ.413276
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2021
    Publication Type: Journal Publications
  • Keywords:

    Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Optics
    Vortex flow
    Ultrashort pulses
    Structured laser
    Solid state lasers
    Pulses
    Proof of principles
    Plasma interactions
    Organic materials
    Orbital angular-momentum
    Optical vortices
    Optical detection
    Modes
    Light
    Laser-plasma acceleration
    Laser produced plasmas
    High reliability
    Generation
    Gaussian beams
    Femtosecond lasers
    Attosecond science
    Acceleration
    Optics
    Electronic, optical and magnetic materials
    Atomic and molecular physics, and optics
  • Documents:

  • Cerca a google

    Search to google scholar