Articles producció científica> Enginyeria Química

Combination of ferrocene decorated gold nanoparticles and engineered primers for the direct reagentless determination of isothermally amplified DNA

  • Identification data

    Identifier: imarina:9187099
    Authors:
    AL-Madhagi, SallamO'Sullivan, Ciara KProdromidis, Mamas IKatakis, Ioanis
    Abstract:
    A reagent-less DNA sensor has been developed exploiting a combination of gold nanoparticles, modified primers, and isothermal amplification. It is applied to the determination ofKarlodinium armiger, a toxic microalgae, as a model analyte to demonstrate this generic platform. Colloidal gold nanoparticles with an average diameter of 14 +/- 0.87 nm were modified with a mixed self-assembled monolayer of thiolated 33-mer DNA probes and (6-mercaptohexyl) ferrocene. Modified primers, exploiting a C3 spacer between the primer-binding site and an engineered single-stranded tail, were used in an isothermal recombinase polymerase amplification reaction to produce an amplicon by two single-stranded tails. These tails were designed to be complementary to a gold electrode tethered capture oligo probe, and an oligo probe immobilized on the gold nanoparticles, respectively. The time required for hybridization of the target tailed DNA with the surface immobilized probe and reporter probe immobilized on AuNPs was optimized and reduced to 10 min, in both cases. Amplification time was further optimized to be 40 min to ensure the maximum signal. Under optimal conditions, the limit of detection was found to be 1.6 fM of target dsDNA. Finally, the developed biosensor was successfully applied to the detection of genomic DNA extracted from a seawater sample that had been spiked with K. armiger cells. The demonstrated generic electrochemical genosensor can be exploited for the detection of any DNA sequence and ongoing work is moving towards an integrated system for use at the point-of-need.
  • Others:

    Author, as appears in the article.: AL-Madhagi, Sallam; O'Sullivan, Ciara K; Prodromidis, Mamas I; Katakis, Ioanis
    Department: Enginyeria Química
    URV's Author/s: Katakis, Ioanis / O'SULLIVAN, CIARA KATHLEEN
    Keywords: Recombinase polymerase amplification Modified primers Karlodinium-veneficum Karlodinium armiger sequence in seawater Isothermal amplification Genomic dna Functionalized gold nanoparticles Electrochemical detection Dna detection Biosensors
    Abstract: A reagent-less DNA sensor has been developed exploiting a combination of gold nanoparticles, modified primers, and isothermal amplification. It is applied to the determination ofKarlodinium armiger, a toxic microalgae, as a model analyte to demonstrate this generic platform. Colloidal gold nanoparticles with an average diameter of 14 +/- 0.87 nm were modified with a mixed self-assembled monolayer of thiolated 33-mer DNA probes and (6-mercaptohexyl) ferrocene. Modified primers, exploiting a C3 spacer between the primer-binding site and an engineered single-stranded tail, were used in an isothermal recombinase polymerase amplification reaction to produce an amplicon by two single-stranded tails. These tails were designed to be complementary to a gold electrode tethered capture oligo probe, and an oligo probe immobilized on the gold nanoparticles, respectively. The time required for hybridization of the target tailed DNA with the surface immobilized probe and reporter probe immobilized on AuNPs was optimized and reduced to 10 min, in both cases. Amplification time was further optimized to be 40 min to ensure the maximum signal. Under optimal conditions, the limit of detection was found to be 1.6 fM of target dsDNA. Finally, the developed biosensor was successfully applied to the detection of genomic DNA extracted from a seawater sample that had been spiked with K. armiger cells. The demonstrated generic electrochemical genosensor can be exploited for the detection of any DNA sequence and ongoing work is moving towards an integrated system for use at the point-of-need.
    Thematic Areas: Zootecnia / recursos pesqueiros Química Materiais Interdisciplinar Geociências Engenharias iv Engenharias ii Ciências biológicas i Ciências ambientais Chemistry, analytical Biotecnología Biodiversidade Astronomia / física Analytical chemistry
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    Author's mail: ioanis.katakis@urv.cat
    Author identifier: 0000-0003-4259-7098
    Record's date: 2024-10-26
    Papper version: info:eu-repo/semantics/acceptedVersion
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Papper original source: Microchimica Acta. 188 (4): 117-
    APA: AL-Madhagi, Sallam; O'Sullivan, Ciara K; Prodromidis, Mamas I; Katakis, Ioanis (2021). Combination of ferrocene decorated gold nanoparticles and engineered primers for the direct reagentless determination of isothermally amplified DNA. Microchimica Acta, 188(4), 117-. DOI: 10.1007/s00604-021-04771-8
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2021
    Publication Type: Journal Publications
  • Keywords:

    Analytical Chemistry,Chemistry, Analytical
    Recombinase polymerase amplification
    Modified primers
    Karlodinium-veneficum
    Karlodinium armiger sequence in seawater
    Isothermal amplification
    Genomic dna
    Functionalized gold nanoparticles
    Electrochemical detection
    Dna detection
    Biosensors
    Zootecnia / recursos pesqueiros
    Química
    Materiais
    Interdisciplinar
    Geociências
    Engenharias iv
    Engenharias ii
    Ciências biológicas i
    Ciências ambientais
    Chemistry, analytical
    Biotecnología
    Biodiversidade
    Astronomia / física
    Analytical chemistry
  • Documents:

  • Cerca a google

    Search to google scholar