Author, as appears in the article.: Garcia, Neus; Lanuza, Maria A; Tomas, Marta; Cilleros-Mane, Victor; Just-Borras, Laia; Duran, Maria; Polishchuk, Aleksandra; Tomas, Josep
Department: Ciències Mèdiques Bàsiques
e-ISSN: 2073-4409
URV's Author/s: Cilleros Mañé, Víctor / DURAN ROMASEWSKYS, MARIA SOLEDAD / Garcia Sancho, Maria de les Neus / Just Borràs, Laia / Lanuza Escolano, María Angel / POLISHCHUK, ALEKSANDRA / Tomás Ferré, José Maria / Tomas Marginet, Marta
Keywords: Tropomyosin Transgenic mouse Synaptogenesis Synaptic transmission Synapse Sodium Signal transduction Receptors Protein kinases Protein kinase c Protein expression Protein Presynaptic terminals Postnatal synapse elimination Pkc Pka Phorbol 13 acetate 12 myristate Nonhuman Nicotinic receptor Nicotinic acetylcholine receptor clusters Neurotrophin receptor Neurotrophic factor Neurotransmitter Neuromuscular junction Neurogenesis Nervous system development Nervous system Nerve ending Musculoskeletal development Muscarinic receptor Muscarinic m4 receptor Muscarinic m3 receptor Muscarinic m2 receptor Muscarinic m1 receptor Mouse Motor end-plate Motor end plate Mice, transgenic Mice Metabotropic receptor Metabolism Maturation Growth, development and aging Genetics Gene expression Decision making Cyclic amp-dependent protein kinases Cyclic amp dependent protein kinase Confocal microscopy Competition Chelerythrine Calphostin c Axonal competition Axon Article Animals Animal tissue Animal model Animal experiment Animal Alpha bungarotoxin Adenosine receptor Adenosine a2a receptor Adenosine a1 receptor Adenosine 3',5' phosphorothioate Adenosine Acetylcholine release 8 bromo cyclic amp 12 deoxyphorbol derivative
Abstract: During the development of the nervous system, synaptogenesis occurs in excess though only the appropriate connections consolidate. At the neuromuscular junction, competition between several motor nerve terminals results in the maturation of a single axon and the elimination of the others. The activity-dependent release of transmitter, cotransmitters, and neurotrophic factors allows the direct mutual influence between motor axon terminals through receptors such as presynaptic muscarinic ACh autoreceptors and the tropomyosin-related kinase B neurotrophin receptor. In previous studies, we investigated the synergistic and antagonistic relations between these receptors and their downstream coupling to PKA and PKC pathways and observed a metabotropic receptor-driven balance between PKA (stabilizes multinnervation) and PKC (promotes developmental axonal loss). However, how much does each kinase contribute in the developmental synapse elimination process? A detailed statistical analysis of the differences between the PKA and PKC effects in the synapse elimination could help to explore this point. The present short communication provides this analysis and results show that a similar level of PKA inhibition and PKC potentiation would be required during development to promote synapse loss.
Thematic Areas: Medicine (miscellaneous) Cell biology Biochemistry, genetics and molecular biology (miscellaneous) Biochemistry, genetics and molecular biology (all)
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: aleksandra.polishchuk@urv.cat laia.just@urv.cat marta.tomas@urv.cat aleksandra.polishchuk@urv.cat victor.cilleros@alumni.urv.cat josepmaria.tomas@urv.cat laia.just@urv.cat mariaangel.lanuza@urv.cat
Author identifier: 0000-0001-6445-1538 0000-0003-0473-3730 0000-0002-4151-1697 0000-0001-6445-1538 0000-0001-5690-9932 0000-0002-0406-0006 0000-0003-0473-3730 0000-0003-4795-4103
Record's date: 2024-10-12
Journal volume: 10
Papper version: info:eu-repo/semantics/publishedVersion
Link to the original source: https://www.mdpi.com/2073-4409/10/6/1384
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Papper original source: Cells. 10 (6): 1384-
APA: Garcia, Neus; Lanuza, Maria A; Tomas, Marta; Cilleros-Mane, Victor; Just-Borras, Laia; Duran, Maria; Polishchuk, Aleksandra; Tomas, Josep (2021). PKA and PKC Balance in Synapse Elimination during Neuromuscular Junction Development. Cells, 10(6), 1384-. DOI: 10.3390/cells10061384
Article's DOI: 10.3390/cells10061384
Entity: Universitat Rovira i Virgili
Journal publication year: 2021
Publication Type: Journal Publications