Articles producció científica> Medicina i Cirurgia

Comparative Analysis of Mammal Genomes Unveils Key Genomic Variability for Human Life Span

  • Identification data

    Identifier: imarina:9232225
    Authors:
    Farre, XMolina, RBarteri, FTimmers, PRHJJoshi, PKOliva, BAcosta, SEsteve-Altava, BNavarro, AMuntane, G
    Abstract:
    The enormous mammal's lifespan variation is the result of each species' adaptations to their own biological trade-offs and ecological conditions. Comparative genomics have demonstrated that genomic factors underlying both, species lifespans and longevity of individuals, are in part shared across the tree of life. Here, we compared protein-coding regions across the mammalian phylogeny to detect individual amino acid (AA) changes shared by the most long-lived mammals and genes whose rates of protein evolution correlate with longevity. We discovered a total of 2,737 AA in 2,004 genes that distinguish long- and short-lived mammals, significantly more than expected by chance (P = 0.003). These genes belong to pathways involved in regulating lifespan, such as inflammatory response and hemostasis. Among them, a total 1,157 AA showed a significant association with maximum lifespan in a phylogenetic test. Interestingly, most of the detected AA positions do not vary in extant human populations (81.2%) or have allele frequencies below 1% (99.78%). Consequently, almost none of these putatively important variants could have been detected by genome-wide association studies. Additionally, we identified four more genes whose rate of protein evolution correlated with longevity in mammals. Crucially, SNPs located in the detected genes explain a larger fraction of human lifespan heritability than expected, successfully demonstrating for the first time that comparative genomics can be used to enhance interpretation of human genome-wide association studies. Finally, we show that the human longevity-associated proteins are significantly more stable than the orthologous proteins from short-lived mammals, strongly suggesting that general protein stability is linked to increased lifespan.
  • Others:

    Author, as appears in the article.: Farre, X; Molina, R; Barteri, F; Timmers, PRHJ; Joshi, PK; Oliva, B; Acosta, S; Esteve-Altava, B; Navarro, A; Muntane, G
    Department: Medicina i Cirurgia
    URV's Author/s: Muntané Medina, Gerard
    Keywords: Wide association Reveals insights R package Protein Molecular signatures Model Maximum lifespan Human longevity Heritability Gwas Genetics Evolution Convergent evolution Comparative genomics Brain size Aging
    Abstract: The enormous mammal's lifespan variation is the result of each species' adaptations to their own biological trade-offs and ecological conditions. Comparative genomics have demonstrated that genomic factors underlying both, species lifespans and longevity of individuals, are in part shared across the tree of life. Here, we compared protein-coding regions across the mammalian phylogeny to detect individual amino acid (AA) changes shared by the most long-lived mammals and genes whose rates of protein evolution correlate with longevity. We discovered a total of 2,737 AA in 2,004 genes that distinguish long- and short-lived mammals, significantly more than expected by chance (P = 0.003). These genes belong to pathways involved in regulating lifespan, such as inflammatory response and hemostasis. Among them, a total 1,157 AA showed a significant association with maximum lifespan in a phylogenetic test. Interestingly, most of the detected AA positions do not vary in extant human populations (81.2%) or have allele frequencies below 1% (99.78%). Consequently, almost none of these putatively important variants could have been detected by genome-wide association studies. Additionally, we identified four more genes whose rate of protein evolution correlated with longevity in mammals. Crucially, SNPs located in the detected genes explain a larger fraction of human lifespan heritability than expected, successfully demonstrating for the first time that comparative genomics can be used to enhance interpretation of human genome-wide association studies. Finally, we show that the human longevity-associated proteins are significantly more stable than the orthologous proteins from short-lived mammals, strongly suggesting that general protein stability is linked to increased lifespan.
    Thematic Areas: Química Molecular biology Medicina ii Medicina i Interdisciplinar Genetics & heredity Genetics General medicine Evolutionary biology Ecology, evolution, behavior and systematics Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Biotecnología Biology, miscellaneous Biodiversidade Biochemistry & molecular biology
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    Author's mail: gerard.muntane@urv.cat
    Record's date: 2024-07-27
    Papper version: info:eu-repo/semantics/publishedVersion
    Link to the original source: https://academic.oup.com/mbe/article/38/11/4948/6326808?login=false
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Papper original source: Molecular Biology And Evolution. 38 (11): 4948-4961
    APA: Farre, X; Molina, R; Barteri, F; Timmers, PRHJ; Joshi, PK; Oliva, B; Acosta, S; Esteve-Altava, B; Navarro, A; Muntane, G (2021). Comparative Analysis of Mammal Genomes Unveils Key Genomic Variability for Human Life Span. Molecular Biology And Evolution, 38(11), 4948-4961. DOI: 10.1093/molbev/msab219
    Article's DOI: 10.1093/molbev/msab219
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2021
    Publication Type: Journal Publications
  • Keywords:

    Biochemistry & Molecular Biology,Biology, Miscellaneous,Ecology, Evolution, Behavior and Systematics,Evolutionary Biology,Genetics,Genetics & Heredity,Molecular Biology
    Wide association
    Reveals insights
    R package
    Protein
    Molecular signatures
    Model
    Maximum lifespan
    Human longevity
    Heritability
    Gwas
    Genetics
    Evolution
    Convergent evolution
    Comparative genomics
    Brain size
    Aging
    Química
    Molecular biology
    Medicina ii
    Medicina i
    Interdisciplinar
    Genetics & heredity
    Genetics
    General medicine
    Evolutionary biology
    Ecology, evolution, behavior and systematics
    Ciências biológicas iii
    Ciências biológicas ii
    Ciências biológicas i
    Biotecnología
    Biology, miscellaneous
    Biodiversidade
    Biochemistry & molecular biology
  • Documents:

  • Cerca a google

    Search to google scholar