Author, as appears in the article.: Amelenan Torimtubun, Alfonsina Abat; Mendez, Maria; Sanchez, Jose G; Pallares, Josep; Palomares, Emilio; Marsal, Lluis F
Department: Enginyeria Electrònica, Elèctrica i Automàtica
URV's Author/s: Marsal Garví, Luis Francisco / MÉNDEZ MÁLAGA, MARIA / Pallarès Marzal, Josep / SANCHEZ LÓPEZ, JOSÉ GUADALUPE / Torimtubun, Alfonsina Abat Amelenan
Project code: Grant agreement No. 713679
Keywords: Zinc oxide Transport layer Titanium compounds Time resolved technique Stability Recombination Polymer Photo-voltage Performance Organic solar cells Operational lifetime Nongeminate Lifetime analysis Inverted organic solar cells Impedance spectroscopy Ii-vi semiconductors High-efficiency Energy markets Electron transport properties Dynamics Degradation pathways Degradation mechanisms Defect density Critical steps Active layer
Abstract: The device operational lifetime and the understanding of the degradation pathways are critical steps for inverted organic solar cells (iOSCs) to enter the energy market. In this work, a combined study of impedance spectroscopy (IS) and photovoltage/photocurrent transient (TPV/TPC) techniques was employed to analyze the degradation of PTB7-Th:PC70BM-based iOSCs in accordance with the ISOS-D1 protocol under ambient conditions without encapsulation. Both techniques provide real information on how devices with different electron transport layers (PFN, TiOx, and ZnO) were degraded, affecting the stability of the active layer. We found that the main cause of degradation is the formation of interface traps in the dark and upon air exposure. The increase of trap density in the active layer upon degradation was revealed by TPV. The change in interface trap density due to the interfacial defect over the shelf-lifetime was further confirmed by the data from IS measurements. Last but not least, modelling dark current-voltage (J-V) using the IS data as well as the morphological changes of each ETL verified our hypothesis.
Thematic Areas: Renewable energy, sustainability and the environment Materials science, multidisciplinary Fuel technology Energy engineering and power technology Energy & fuels Chemistry, physical
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: alfonsina.abat@estudiants.urv.cat alfonsina.abat@estudiants.urv.cat josep.pallares@urv.cat lluis.marsal@urv.cat
Author identifier: 0000-0001-8012-4772 0000-0001-8012-4772 0000-0001-7221-5383 0000-0002-5976-1408
Record's date: 2024-10-12
Papper version: info:eu-repo/semantics/publishedVersion
Link to the original source: https://pubs.rsc.org/en/content/articlelanding/2021/se/d1se01107c
Funding program: Marie Skłodowska-Curie Actions - European Union's Horizon 2020 research and innovation programme
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Papper original source: Sustainable Energy & Fuels. 5 (24): 6498-6508
APA: Amelenan Torimtubun, Alfonsina Abat; Mendez, Maria; Sanchez, Jose G; Pallares, Josep; Palomares, Emilio; Marsal, Lluis F (2021). Shelf lifetime analysis of organic solar cells combining frequency and time resolved techniques. Sustainable Energy & Fuels, 5(24), 6498-6508. DOI: 10.1039/d1se01107c
Acronym: MFP
Article's DOI: 10.1039/d1se01107c
Entity: Universitat Rovira i Virgili
Journal publication year: 2021
Funding program action: Martí i Franquès COFUND Doctoral Programme
Publication Type: Journal Publications