Author, as appears in the article.: Marín, D.; Saavedra, M.; Villadelprat, J.
Department: Enginyeria Informàtica i Matemàtiques
Project code: PID2020-118281GB-C33
Abstract: In this paper we consider the unfolding of saddle-node X=1xUa(x,y)(x(xμ−ε)∂x−Va(x)y∂y), parametrized by (ε,a) with ε≈0 and a in an open subset A of Rα, and we study the Dulac time T(s;ε,a) of one of its hyperbolic sectors. We prove (theorem 1.1) that the derivative ∂sT(s;ε,a) tends to −∞ as (s,ε)→(0+,0) uniformly on compact subsets of A. This result is addressed to study the bifurcation of critical periods in the Loud's family of quadratic centres. In this regard we show (theorem 1.2) that no bifurcation occurs from certain semi-hyperbolic polycycles.
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: jordi.villadelprat@urv.cat
Papper version: info:eu-repo/semantics/publishedVersion
Link to the original source: https://www.cambridge.org/core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics/article/nonbifurcation-of-critical-periods-from-semihyperbolic-polycycles-of-quadratic-centres/073FECBF28E5CAD0FA0C6345E712F2DA
Funding program: Herramientas para el análisis de diagramas de bifurcación en sistemas dinámicos
Acronym: ATBiD
Article's DOI: 10.1017/prm.2021.72
Journal publication year: 2023
Funding program action: Proyectos I+D Generación de Conocimiento
Publication Type: info:eu-repo/semantics/article