Articles producció científica> Enginyeria Informàtica i Matemàtiques

Non-bifurcation of critical periods from semi-hyperbolic polycycles of quadratic centres

  • Identification data

    Identifier: imarina:9242292
    Authors:
    Marín, D.Saavedra, M.Villadelprat, J.
    Abstract:
    In this paper we consider the unfolding of saddle-node X=1xUa(x,y)(x(xμ−ε)∂x−Va(x)y∂y), parametrized by (ε,a) with ε≈0 and a in an open subset A of Rα, and we study the Dulac time T(s;ε,a) of one of its hyperbolic sectors. We prove (theorem 1.1) that the derivative ∂sT(s;ε,a) tends to −∞ as (s,ε)→(0+,0) uniformly on compact subsets of A. This result is addressed to study the bifurcation of critical periods in the Loud's family of quadratic centres. In this regard we show (theorem 1.2) that no bifurcation occurs from certain semi-hyperbolic polycycles.
  • Others:

    Author, as appears in the article.: Marín, D.; Saavedra, M.; Villadelprat, J.
    Department: Enginyeria Informàtica i Matemàtiques
    Project code: PID2020-118281GB-C33
    Abstract: In this paper we consider the unfolding of saddle-node X=1xUa(x,y)(x(xμ−ε)∂x−Va(x)y∂y), parametrized by (ε,a) with ε≈0 and a in an open subset A of Rα, and we study the Dulac time T(s;ε,a) of one of its hyperbolic sectors. We prove (theorem 1.1) that the derivative ∂sT(s;ε,a) tends to −∞ as (s,ε)→(0+,0) uniformly on compact subsets of A. This result is addressed to study the bifurcation of critical periods in the Loud's family of quadratic centres. In this regard we show (theorem 1.2) that no bifurcation occurs from certain semi-hyperbolic polycycles.
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    Author's mail: jordi.villadelprat@urv.cat
    Papper version: info:eu-repo/semantics/publishedVersion
    Link to the original source: https://www.cambridge.org/core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics/article/nonbifurcation-of-critical-periods-from-semihyperbolic-polycycles-of-quadratic-centres/073FECBF28E5CAD0FA0C6345E712F2DA
    Funding program: Herramientas para el análisis de diagramas de bifurcación en sistemas dinámicos
    Acronym: ATBiD
    Article's DOI: 10.1017/prm.2021.72
    Journal publication year: 2023
    Funding program action: Proyectos I+D Generación de Conocimiento
    Publication Type: info:eu-repo/semantics/article
  • Keywords:

    Period function, saddle-node unfolding, Dulac time, asymptotic expansions
  • Documents:

  • Cerca a google

    Search to google scholar