Articles producció científica> Enginyeria Electrònica, Elèctrica i Automàtica

Phthalocyanines and Porphyrins/Polyaniline Composites (PANI/CuPctBu and PANI/TPPH2) as Sensing Materials for Ammonia Detection

  • Identification data

    Identifier: imarina:9247322
    Authors:
    Pauly AAli SSVarenne CBrunet JLlobet ENdiaye AL
    Abstract:
    We combined a conducting polymer, polyaniline (PANI), with an organic semiconducting macrocyclic (MCs) material. The macrocycles are the phthalocyanines and porphyrins used to tune the electrical properties of the PANI, which benefits from their ability to enhance sensor response. For this, we proceeded by a simple ultrasonically assisted reaction involving the two components, i.e., the PANI matrix and the MCs, to achieve the synthesis of the composite nanostructure PANI/MCs. The composite nanostructure has been characterized and deposited on interdigitated electrodes (IDEs) to construct resistive sensor devices. The isolated nanostructured composites present good electrical properties dominated by PANI electronic conductivity, and the characterization reveals that both components are present in the nanostructure. The experimental results obtained under gas exposures show that the composite nanostructures can be used as a sensing material with enhanced sensing properties. The sensing performance under different conditions, such as ambient humidity, and the sensor’s operating temperature are also investigated. Sensing behavior in deficient humidity levels and their response at different temperatures revealed unusual behaviors that help to understand the sensing mechanism. Gas sensors based on PANI/MCs demonstrate significant stability over time, but this stability is highly reduced after experiments in lower humidity conditions and at high temperatures.
  • Others:

    Author, as appears in the article.: Pauly A; Ali SS; Varenne C; Brunet J; Llobet E; Ndiaye AL
    Department: Enginyeria Electrònica, Elèctrica i Automàtica
    URV's Author/s: Llobet Valero, Eduard
    Keywords: Temperature Resistive sensors Porphyrins Polyaniline thin-films Polyaniline Phthalocyanine Humidity Ammonia temperature resistive sensors porphyrins phthalocyanine nh3 nanocomposite humidity gas sensitivity facile fabrication doped polyaniline conducting polymers carbon nanotubes ammonia
    Abstract: We combined a conducting polymer, polyaniline (PANI), with an organic semiconducting macrocyclic (MCs) material. The macrocycles are the phthalocyanines and porphyrins used to tune the electrical properties of the PANI, which benefits from their ability to enhance sensor response. For this, we proceeded by a simple ultrasonically assisted reaction involving the two components, i.e., the PANI matrix and the MCs, to achieve the synthesis of the composite nanostructure PANI/MCs. The composite nanostructure has been characterized and deposited on interdigitated electrodes (IDEs) to construct resistive sensor devices. The isolated nanostructured composites present good electrical properties dominated by PANI electronic conductivity, and the characterization reveals that both components are present in the nanostructure. The experimental results obtained under gas exposures show that the composite nanostructures can be used as a sensing material with enhanced sensing properties. The sensing performance under different conditions, such as ambient humidity, and the sensor’s operating temperature are also investigated. Sensing behavior in deficient humidity levels and their response at different temperatures revealed unusual behaviors that help to understand the sensing mechanism. Gas sensors based on PANI/MCs demonstrate significant stability over time, but this stability is highly reduced after experiments in lower humidity conditions and at high temperatures.
    Thematic Areas: Polymers and plastics Polymer science Odontología General chemistry Farmacia Engenharias ii Ciências biológicas ii Chemistry (miscellaneous) Chemistry (all) Biotecnología Astronomia / física
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    Author's mail: eduard.llobet@urv.cat
    Author identifier: 0000-0001-6164-4342
    Record's date: 2024-09-07
    Papper version: info:eu-repo/semantics/publishedVersion
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Papper original source: Polymers. 14 (5):
    APA: Pauly A; Ali SS; Varenne C; Brunet J; Llobet E; Ndiaye AL (2022). Phthalocyanines and Porphyrins/Polyaniline Composites (PANI/CuPctBu and PANI/TPPH2) as Sensing Materials for Ammonia Detection. Polymers, 14(5), -. DOI: 10.3390/polym14050891
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2022
    Publication Type: Journal Publications
  • Keywords:

    Chemistry (Miscellaneous),Polymer Science,Polymers and Plastics
    Temperature
    Resistive sensors
    Porphyrins
    Polyaniline thin-films
    Polyaniline
    Phthalocyanine
    Humidity
    Ammonia
    temperature
    resistive sensors
    porphyrins
    phthalocyanine
    nh3
    nanocomposite
    humidity
    gas sensitivity
    facile fabrication
    doped polyaniline
    conducting polymers
    carbon nanotubes
    ammonia
    Polymers and plastics
    Polymer science
    Odontología
    General chemistry
    Farmacia
    Engenharias ii
    Ciências biológicas ii
    Chemistry (miscellaneous)
    Chemistry (all)
    Biotecnología
    Astronomia / física
  • Documents:

  • Cerca a google

    Search to google scholar