Articles producció científica> Enginyeria Química

Fabrication of a Stainless-Steel Pump Impeller by Integrated 3D Sand Printing and Casting: Mechanical Characterization and Performance Study in a Chemical Plant

  • Identification data

    Identifier: imarina:9261592
    Authors:
    Hernandez, FelixFragoso, Alex
    Abstract:
    Featured Application Design, construction, and performance study of a pump impeller manufactured by binder jet-ting technology. The emergence of additive manufacturing is renovating the landscape of available production technologies. In this paper, we describe the fabrication of a closed vane pump impeller (phi 206 mm, height 68 mm, weight 4 kg) by binder jetting 3D printing of a sand mould followed by casting using stainless steel 316 to create an identical copy of a part in service in a chemical plant in Tarragona, Spain. The original part was reverse engineered and used to create a sand mould by binder jetting 3D printing on which new impellers were fabricated by casting. Metallographic studies showed an austenitic matrix with 6.3% of ferritic phase and 40 mu m x 8 mu m ferrite grains without precipitated carbides. The impeller was put into operation in a centrifugal pump at a polyol/polyglycol plant belonging to Dow Chemical Iberica SL from October 2020 to April 2021. Process variables related to the pump behaviour were compared with the same variables obtained in previous cycles with the original impeller for three different product viscosities (30, 180, and 500 cSt). At 500 cSt, the average current consumption was 9.34 A as compared with the 9.41 A measured with the original impeller. Similarly, the pump pressure remained essentially constant during process operation with both impellers (3.97 bar with the new impeller vs. 3.99 bar with the old). Other monitored parameters (product flow, tank level) were similar in both cases, validating the fabrication strategy from an operational point of view. This work further demonstrated that the implementation of additive manufacturing technologies in chemical process engineering is a useful solution to fabricate spare parts
  • Others:

    Author, as appears in the article.: Hernandez, Felix; Fragoso, Alex
    Department: Enginyeria Química
    URV's Author/s: Fragoso Sierra, Alex
    Keywords: Sand mould Mold Impeller Binder jetting Additive manufacturing 3d printing
    Abstract: Featured Application Design, construction, and performance study of a pump impeller manufactured by binder jet-ting technology. The emergence of additive manufacturing is renovating the landscape of available production technologies. In this paper, we describe the fabrication of a closed vane pump impeller (phi 206 mm, height 68 mm, weight 4 kg) by binder jetting 3D printing of a sand mould followed by casting using stainless steel 316 to create an identical copy of a part in service in a chemical plant in Tarragona, Spain. The original part was reverse engineered and used to create a sand mould by binder jetting 3D printing on which new impellers were fabricated by casting. Metallographic studies showed an austenitic matrix with 6.3% of ferritic phase and 40 mu m x 8 mu m ferrite grains without precipitated carbides. The impeller was put into operation in a centrifugal pump at a polyol/polyglycol plant belonging to Dow Chemical Iberica SL from October 2020 to April 2021. Process variables related to the pump behaviour were compared with the same variables obtained in previous cycles with the original impeller for three different product viscosities (30, 180, and 500 cSt). At 500 cSt, the average current consumption was 9.34 A as compared with the 9.41 A measured with the original impeller. Similarly, the pump pressure remained essentially constant during process operation with both impellers (3.97 bar with the new impeller vs. 3.99 bar with the old). Other monitored parameters (product flow, tank level) were similar in both cases, validating the fabrication strategy from an operational point of view. This work further demonstrated that the implementation of additive manufacturing technologies in chemical process engineering is a useful solution to fabricate spare parts that are difficult to replicate with other technologies, providing consequent economic benefits.
    Thematic Areas: Química Process chemistry and technology Physics, applied Materials science, multidisciplinary Materials science (miscellaneous) Materials science (all) Materiais Instrumentation General materials science General engineering Fluid flow and transfer processes Engineering, multidisciplinary Engineering (miscellaneous) Engineering (all) Engenharias ii Engenharias i Computer science applications Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências agrárias i Ciência de alimentos Chemistry, multidisciplinary Biodiversidade Astronomia / física
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    Author's mail: alex.fragoso@urv.cat
    Author identifier: 0000-0003-4839-6094
    Record's date: 2024-10-12
    Papper version: info:eu-repo/semantics/publishedVersion
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Papper original source: Applied Sciences-Basel. 12 (7): 3539-
    APA: Hernandez, Felix; Fragoso, Alex (2022). Fabrication of a Stainless-Steel Pump Impeller by Integrated 3D Sand Printing and Casting: Mechanical Characterization and Performance Study in a Chemical Plant. Applied Sciences-Basel, 12(7), 3539-. DOI: 10.3390/app12073539
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2022
    Publication Type: Journal Publications
  • Keywords:

    Chemistry, Multidisciplinary,Computer Science Applications,Engineering (Miscellaneous),Engineering, Multidisciplinary,Fluid Flow and Transfer Processes,Instrumentation,Materials Science (Miscellaneous),Materials Science, Multidisciplinary,Physics, Applied,Process Chemistry and Technology
    Sand mould
    Mold
    Impeller
    Binder jetting
    Additive manufacturing
    3d printing
    Química
    Process chemistry and technology
    Physics, applied
    Materials science, multidisciplinary
    Materials science (miscellaneous)
    Materials science (all)
    Materiais
    Instrumentation
    General materials science
    General engineering
    Fluid flow and transfer processes
    Engineering, multidisciplinary
    Engineering (miscellaneous)
    Engineering (all)
    Engenharias ii
    Engenharias i
    Computer science applications
    Ciências biológicas iii
    Ciências biológicas ii
    Ciências biológicas i
    Ciências agrárias i
    Ciência de alimentos
    Chemistry, multidisciplinary
    Biodiversidade
    Astronomia / física
  • Documents:

  • Cerca a google

    Search to google scholar