Articles producció científica> Enginyeria Química

Ferrocene anchored activated carbon as a versatile catalyst for the synthesis of 1,5-benzodiazepines via one-pot environmentally benign conditions

  • Identification data

    Identifier: imarina:9262469
    Authors:
    Kusuma, SumanPatil, Komal N.Srinivasappa, Puneethkumar M.Chaudhari, NitinSoni, AjayNabgan, WalidJadhav, Arvind H.
    Abstract:
    1,5-Benzodiazepine is considered as one of the central moieties in the core unit of most drug molecules. Construction of such moieties with a new C-N bond under solvent-free and mild reaction conditions is challenging. Herein, we present a benign protocol for one pot synthesis of 1,5-benzodiazepine derivatives by using ferrocene (FC) supported activated carbon (AC) as a heterogeneous catalyst. The catalyst FC/AC was characterized by several analytical and spectroscopic techniques to reveal its physicochemical properties and for structural confirmation. The synthesized catalyst FC/AC was explored for its catalytic activity in the synthesis of 1,5-benzodiazepines through condensation of o-phenylenediamine (OPDA) and ketones (aromatic and aliphatic) under solvent-free conditions. The robust 10 wt% FC/AC catalyst demonstrated appreciable activity with 99% conversion of diamines and 91% selectivity towards the synthesis of the desired benzodiazepine derivatives under solvent-free conditions at 90 degrees C in 8 h. Additionally, several reaction parameters such as catalyst loading, reaction temperature, effect of reaction time and effect of different solvents on selectivity were also studied and discussed in-depth. To understand the scope of the reaction, several symmetrical and unsymmetrical ketones along with different substituted diamines were tested with the synthesized catalyst. All prepared reaction products were obtained in good to efficient yields and were isolated and identified as 1,5-benzodiazepines and no side products were observed. The obtained catalyst characterization data and the activity studies suggested that, the synergetic effect occurred due to the uniform dispersion of ferrocene over the AC surface with numerous acidic sites which triggered the reaction
  • Others:

    Author, as appears in the article.: Kusuma, Suman; Patil, Komal N.; Srinivasappa, Puneethkumar M.; Chaudhari, Nitin; Soni, Ajay; Nabgan, Walid; Jadhav, Arvind H.;
    Department: Enginyeria Química
    URV's Author/s: Nabgan, Walid
    Keywords: Triflate Route Reusable catalyst Mild Highly efficient Graphene oxide Facile Derivatives Complexes 3-component synthesis
    Abstract: 1,5-Benzodiazepine is considered as one of the central moieties in the core unit of most drug molecules. Construction of such moieties with a new C-N bond under solvent-free and mild reaction conditions is challenging. Herein, we present a benign protocol for one pot synthesis of 1,5-benzodiazepine derivatives by using ferrocene (FC) supported activated carbon (AC) as a heterogeneous catalyst. The catalyst FC/AC was characterized by several analytical and spectroscopic techniques to reveal its physicochemical properties and for structural confirmation. The synthesized catalyst FC/AC was explored for its catalytic activity in the synthesis of 1,5-benzodiazepines through condensation of o-phenylenediamine (OPDA) and ketones (aromatic and aliphatic) under solvent-free conditions. The robust 10 wt% FC/AC catalyst demonstrated appreciable activity with 99% conversion of diamines and 91% selectivity towards the synthesis of the desired benzodiazepine derivatives under solvent-free conditions at 90 degrees C in 8 h. Additionally, several reaction parameters such as catalyst loading, reaction temperature, effect of reaction time and effect of different solvents on selectivity were also studied and discussed in-depth. To understand the scope of the reaction, several symmetrical and unsymmetrical ketones along with different substituted diamines were tested with the synthesized catalyst. All prepared reaction products were obtained in good to efficient yields and were isolated and identified as 1,5-benzodiazepines and no side products were observed. The obtained catalyst characterization data and the activity studies suggested that, the synergetic effect occurred due to the uniform dispersion of ferrocene over the AC surface with numerous acidic sites which triggered the reaction of diamine and ketone to form the corresponding benzodiazepine derivative and the same was illustrated in the plausible mechanism. Furthermore, the synthesized catalyst was tested for leaching and recyclability, and the results confirmed that catalyst can be used for up to six consecutive cycles without much loss in the catalytic activity and its morphology which makes the process sustainable and economical for scale-up production. The present method offered several advantages such as an ecofriendly method, excellent yields, sustainable catalytic transformation, easy work-up and isolation of products, and quick recovery of catalyst.
    Thematic Areas: Zootecnia / recursos pesqueiros Saúde coletiva Química Odontología Medicina veterinaria Medicina iii Medicina ii Medicina i Materiais Interdisciplinar Geociências General chemistry General chemical engineering Farmacia Ensino Engenharias iv Engenharias iii Engenharias ii Engenharias i Economia Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Ciência da computação Chemistry, multidisciplinary Chemistry (miscellaneous) Chemistry (all) Chemical engineering (miscellaneous) Chemical engineering (all) Biotecnología Biodiversidade Astronomia / física
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    Author's mail: walid.nabgan@urv.cat
    Author identifier: 0000-0001-9901-862X
    Record's date: 2024-09-07
    Papper version: info:eu-repo/semantics/publishedVersion
    Link to the original source: https://pubs.rsc.org/en/content/articlelanding/2022/ra/d2ra00202g
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Papper original source: Rsc Advances. 12 (23): 14740-14756
    APA: Kusuma, Suman; Patil, Komal N.; Srinivasappa, Puneethkumar M.; Chaudhari, Nitin; Soni, Ajay; Nabgan, Walid; Jadhav, Arvind H.; (2022). Ferrocene anchored activated carbon as a versatile catalyst for the synthesis of 1,5-benzodiazepines via one-pot environmentally benign conditions. Rsc Advances, 12(23), 14740-14756. DOI: 10.1039/d2ra00202g
    Article's DOI: 10.1039/d2ra00202g
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2022
    Publication Type: Journal Publications
  • Keywords:

    Chemical Engineering (Miscellaneous),Chemistry (Miscellaneous),Chemistry, Multidisciplinary
    Triflate
    Route
    Reusable catalyst
    Mild
    Highly efficient
    Graphene oxide
    Facile
    Derivatives
    Complexes
    3-component synthesis
    Zootecnia / recursos pesqueiros
    Saúde coletiva
    Química
    Odontología
    Medicina veterinaria
    Medicina iii
    Medicina ii
    Medicina i
    Materiais
    Interdisciplinar
    Geociências
    General chemistry
    General chemical engineering
    Farmacia
    Ensino
    Engenharias iv
    Engenharias iii
    Engenharias ii
    Engenharias i
    Economia
    Ciências biológicas iii
    Ciências biológicas ii
    Ciências biológicas i
    Ciências ambientais
    Ciências agrárias i
    Ciência de alimentos
    Ciência da computação
    Chemistry, multidisciplinary
    Chemistry (miscellaneous)
    Chemistry (all)
    Chemical engineering (miscellaneous)
    Chemical engineering (all)
    Biotecnología
    Biodiversidade
    Astronomia / física
  • Documents:

  • Cerca a google

    Search to google scholar