Author, as appears in the article.: Alagh, Aanchal; Annanouch, Fatima Ezahra; Al Youssef, Khaled; Bittencourt, Carla; Gueell, Frank; Martinez-Alanis, Paulina R; Reguant, Marc; Llobet, Eduard
Department: Enginyeria Electrònica, Elèctrica i Automàtica
URV's Author/s: Alagh, Aanchal / Annanouch, Fatima Ezahra / Llobet Valero, Eduard
Project code: Grant agreement No. 713679
Keywords: Tungsten disulphide Tmds Gas sensors Functionalization Cvd Aacvd
Abstract: In this work tungsten disulphide nanostructures loaded with platinum-oxide (PtO), or palladium-oxide (PdO) were grown directly onto alumina substrates. This was achieved using a combination of aerosol-assisted chemical vapour deposition (AA-CVD) method with atmospheric pressure CVD technique. At first, tungsten oxide nanowires loaded with either PtO or PdO nanoparticles were successfully co-deposited via AA-CVD followed by sulfurization at 900 °C in the next step. The morphological, structural, and chemical characteristics were investigated using FESEM, TEM, XRD, XPS and Raman spectroscopy. The results confirm the presence of PdO and PtO in the WS2 host matrix. Gas sensing attributes of loaded and pristine WS2 sensors were investigated, at room temperature, towards different analytes (NO2, NH3, H2 etc.). Both pristine and metal-oxide loaded WS2 gas sensors show remarkable responses at room temperature towards NO2 detection. Further, the loaded sensors demonstrated stable, reproducible, ultrasensitive, and enhanced gas sensing response, with a detection limit below 25 ppb. Additionally, the effect of ambient humidity on the sensing response of both loaded and pristine sensors was investigated for NO2 gas. The response of PtO loaded sensor considerably decreased in humid environments, while the response for pristine and PdO loaded sensors increased. However, slightly heating (at 100 °C) the sensors, suppresses the influence of humidity. Finally, the long-term stability of different sensors is investigated, and the results demonstrate high stability with repeatable results after 6 weeks of gas sensing tests. This work exploits an attractive pathway to add functionality in the transition metal dichalcogenide host matrix.
Thematic Areas: Surfaces, coatings and films Spectroscopy Química Odontología Nutrição Metals and alloys Medicina ii Medicina i Materials chemistry Materiais Interdisciplinar Instruments & instrumentation Instrumentation Farmacia Engenharias iv Engenharias iii Engenharias ii Engenharias i Electronic, optical and magnetic materials Electrochemistry Electrical and electronic engineering Educação física Educação Economia Condensed matter physics Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Ciência da computação Chemistry, analytical Biotecnología Biodiversidade Astronomia / física Analytical chemistry
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: fatimaezahra.annanouch@urv.cat aanchal.alagh@estudiants.urv.cat aanchal.alagh@estudiants.urv.cat eduard.llobet@urv.cat
Author identifier: 0000-0003-1533-6482 0000-0003-2466-8219 0000-0003-2466-8219 0000-0001-6164-4342
Record's date: 2024-09-07
Papper version: info:eu-repo/semantics/publishedVersion
Link to the original source: https://www.sciencedirect.com/science/article/pii/S0925400522005470
Funding program: Marie Skłodowska-Curie Actions - European Union's Horizon 2020 research and innovation programme
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Papper original source: Sensors And Actuators B-Chemical. 364 131905-
APA: Alagh, Aanchal; Annanouch, Fatima Ezahra; Al Youssef, Khaled; Bittencourt, Carla; Gueell, Frank; Martinez-Alanis, Paulina R; Reguant, Marc; Llobet, Ed (2022). PdO and PtO loaded WS2 boosts NO2 gas sensing characteristics at room temperature. Sensors And Actuators B-Chemical, 364(), 131905-. DOI: 10.1016/j.snb.2022.131905
Acronym: MFP
Article's DOI: 10.1016/j.snb.2022.131905
Entity: Universitat Rovira i Virgili
Journal publication year: 2022
Funding program action: Martí i Franquès COFUND Doctoral Programme
Publication Type: Journal Publications