Articles producció científica> Ciències Mèdiques Bàsiques

Grape-Seed Procyanidin Extract (GSPE) Seasonal-Dependent Modulation of Glucose and Lipid Metabolism in the Liver of Healthy F344 Rats

  • Identification data

    Identifier: imarina:9267375
    Authors:
    Rodriguez, Romina M.Colom-Pellicer, MarinaBlanco, JordiCalvo, EnriqueAragones, GerardMulero, Miquel
    Abstract:
    Seasonality is gaining attention in the modulation of some physiological and metabolic functions in mammals. Furthermore, the consumption of natural compounds, such as GSPE, is steadily increasing. Consequently, in order to study the interaction of seasonal variations in day length over natural compounds' molecular effects, we carried out an animal study using photosensitive rats which were chronically exposed for 9 weeks to three photoperiods (L6, L18, and L12) in order to mimic the day length of different seasons (winter/summer/and autumn-spring). In parallel, animals were also treated either with GSPE 25 (mg/kg) or vehicle (VH) for 4 weeks. Interestingly, a seasonal-dependent GSPE modulation on the hepatic glucose and lipid metabolism was observed. For example, some metabolic genes from the liver (SREBP-1c, Gk, Acaca) changed their expression due to seasonality. Furthermore, the metabolomic results also indicated a seasonal influence on the GSPE effects associated with glucose-6-phosphate, D-glucose, and D-ribose, among others. These differential effects, which were also reflected in some plasmatic parameters (i.e., glucose and triglycerides) and hormones (corticosterone and melatonin), were also associated with significant changes in the expression of several hepatic circadian clock genes (Bmal1, Cry1, and Nr1d1) and ER stress genes (Atf6, Grp78, and Chop). Our results point out the importance of circannual rhythms in regulating metabolic homeostasis and suggest that seasonal variations (long or short photoperiods) affect hepatic metabolism in rats. Furthermore, they suggest that procyanidin consumption could be useful for the modulation of the photoperiod-dependent changes on glucose and lipid metabolism, whose alterations could be related to metabolic diseases (e.
  • Others:

    Author, as appears in the article.: Rodriguez, Romina M.; Colom-Pellicer, Marina; Blanco, Jordi; Calvo, Enrique; Aragones, Gerard; Mulero, Miquel;
    Department: Bioquímica i Biotecnologia Ciències Mèdiques Bàsiques
    URV's Author/s: Aragonès Bargalló, Gerard / Blanco Pérez, Jordi / Calvo Manso, Enrique / Colom Pellicer, Marina / Mulero Abellán, Miguel / Rodriguez, Romina Mariel
    Keywords: Seasonal Proanthocyanidin extract Photoperiod Oxidative stress Melatonin Liver Gspe Glycogen-phosphorylase Gene-expression Er stress Endoplasmic-reticulum stress Density-lipoprotein cholesterol Clock genes Ampk Activation
    Abstract: Seasonality is gaining attention in the modulation of some physiological and metabolic functions in mammals. Furthermore, the consumption of natural compounds, such as GSPE, is steadily increasing. Consequently, in order to study the interaction of seasonal variations in day length over natural compounds' molecular effects, we carried out an animal study using photosensitive rats which were chronically exposed for 9 weeks to three photoperiods (L6, L18, and L12) in order to mimic the day length of different seasons (winter/summer/and autumn-spring). In parallel, animals were also treated either with GSPE 25 (mg/kg) or vehicle (VH) for 4 weeks. Interestingly, a seasonal-dependent GSPE modulation on the hepatic glucose and lipid metabolism was observed. For example, some metabolic genes from the liver (SREBP-1c, Gk, Acaca) changed their expression due to seasonality. Furthermore, the metabolomic results also indicated a seasonal influence on the GSPE effects associated with glucose-6-phosphate, D-glucose, and D-ribose, among others. These differential effects, which were also reflected in some plasmatic parameters (i.e., glucose and triglycerides) and hormones (corticosterone and melatonin), were also associated with significant changes in the expression of several hepatic circadian clock genes (Bmal1, Cry1, and Nr1d1) and ER stress genes (Atf6, Grp78, and Chop). Our results point out the importance of circannual rhythms in regulating metabolic homeostasis and suggest that seasonal variations (long or short photoperiods) affect hepatic metabolism in rats. Furthermore, they suggest that procyanidin consumption could be useful for the modulation of the photoperiod-dependent changes on glucose and lipid metabolism, whose alterations could be related to metabolic diseases (e.g., diabetes, obesity, and cardiovascular disease). Furthermore, even though the GSPE effect is not restricted to a specific photoperiod, our results suggest a more significant effect in the L18 condition.
    Thematic Areas: Química Molecular biology Materiais General medicine Farmacia Ensino Biochemistry & molecular biology Biochemistry
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    Author's mail: marina.colom@urv.cat enrique.calvo@urv.cat marina.colom@urv.cat marina.colom@urv.cat rominamariel.rodriguez@urv.cat rominamariel.rodriguez@urv.cat jordi.blanco@urv.cat miquel.mulero@urv.cat gerard.aragones@urv.cat
    Author identifier: 0000-0001-8016-0984
    Record's date: 2024-09-07
    Papper version: info:eu-repo/semantics/publishedVersion
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Papper original source: Biomolecules. 12 (6):
    APA: Rodriguez, Romina M.; Colom-Pellicer, Marina; Blanco, Jordi; Calvo, Enrique; Aragones, Gerard; Mulero, Miquel; (2022). Grape-Seed Procyanidin Extract (GSPE) Seasonal-Dependent Modulation of Glucose and Lipid Metabolism in the Liver of Healthy F344 Rats. Biomolecules, 12(6), -. DOI: 10.3390/biom12060839
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2022
    Publication Type: Journal Publications
  • Keywords:

    Biochemistry,Biochemistry & Molecular Biology,Molecular Biology
    Seasonal
    Proanthocyanidin extract
    Photoperiod
    Oxidative stress
    Melatonin
    Liver
    Gspe
    Glycogen-phosphorylase
    Gene-expression
    Er stress
    Endoplasmic-reticulum stress
    Density-lipoprotein cholesterol
    Clock genes
    Ampk
    Activation
    Química
    Molecular biology
    Materiais
    General medicine
    Farmacia
    Ensino
    Biochemistry & molecular biology
    Biochemistry
  • Documents:

  • Cerca a google

    Search to google scholar