Articles producció científica> Química Física i Inorgànica

Quantum dynamics simulations of the thermal and light-induced high-spin to low-spin relaxation in Fe(bpy)(3) and Fe(mtz)(6)

  • Identification data

    Identifier: imarina:9267442
    Authors:
    Alias-Rodriguez, MHuix-Rotllant, Mde Graaf, C
    Abstract:
    First row transition metal complexes with d4 to d7 electronic configurations exhibit spin-crossover (SCO), which can be induced by external stimuli, such as temperature, pressure and light. The low-spin to high-spin transition has been widely studied, but very little is known about the reverse process. Here, we present a theoretical study of thermal and light-induced high-to-low spin crossover in prototypical Fe(II) complexes. The lifetime of the high-spin state in the thermal process is determined using Fermi's golden rule. With this methodology, we have accurately computed the transfer rate of the HS state thermal relaxation at several time scales (from sub-nanosecond to a few seconds) in two different iron complexes. The use of quasi-degenerate perturbation theory (QDPT2) in the analysis of the LS-HS spin-orbit coupling has allowed us to identify 3T1 as the main intermediate state coupling the LS and HS states. The light-induced process has been studied using wavepacket quantum dynamics along the main vibrational coordinates (one symmetric and two asymmetric Fe-N stretchings). The study suggests that after the initial excitation from the 5T2g to the 5Eg state, the population is transferred back to a vibrationally hot 5T2g state, from which a small amount of the population is transferred to the 1A1g state via the intermediate 3T1g. Most of the population remains trapped in the HS state at the time scale of the simulation.
  • Others:

    Author, as appears in the article.: Alias-Rodriguez, M; Huix-Rotllant, M; de Graaf, C
    Department: Química Física i Inorgànica
    URV's Author/s: Alías Rodríguez, Marc / De Graaf, Cornelis
    Keywords: Crossover states deactivation
    Abstract: First row transition metal complexes with d4 to d7 electronic configurations exhibit spin-crossover (SCO), which can be induced by external stimuli, such as temperature, pressure and light. The low-spin to high-spin transition has been widely studied, but very little is known about the reverse process. Here, we present a theoretical study of thermal and light-induced high-to-low spin crossover in prototypical Fe(II) complexes. The lifetime of the high-spin state in the thermal process is determined using Fermi's golden rule. With this methodology, we have accurately computed the transfer rate of the HS state thermal relaxation at several time scales (from sub-nanosecond to a few seconds) in two different iron complexes. The use of quasi-degenerate perturbation theory (QDPT2) in the analysis of the LS-HS spin-orbit coupling has allowed us to identify 3T1 as the main intermediate state coupling the LS and HS states. The light-induced process has been studied using wavepacket quantum dynamics along the main vibrational coordinates (one symmetric and two asymmetric Fe-N stretchings). The study suggests that after the initial excitation from the 5T2g to the 5Eg state, the population is transferred back to a vibrationally hot 5T2g state, from which a small amount of the population is transferred to the 1A1g state via the intermediate 3T1g. Most of the population remains trapped in the HS state at the time scale of the simulation.
    Thematic Areas: Química Physical and theoretical chemistry Medicine (miscellaneous) Materiais Interdisciplinar Geociências Ciências biológicas ii Ciências ambientais Ciência de alimentos Chemistry, physical Biotecnología Astronomia / física
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    Author's mail: coen.degraaf@urv.cat
    Author identifier: 0000-0001-8114-6658
    Record's date: 2024-09-07
    Papper version: info:eu-repo/semantics/acceptedVersion
    Link to the original source: https://pubs.rsc.org/en/content/articlelanding/2022/fd/d2fd00027j
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Papper original source: Faraday Discussions. 237 (0): 93-107
    APA: Alias-Rodriguez, M; Huix-Rotllant, M; de Graaf, C (2022). Quantum dynamics simulations of the thermal and light-induced high-spin to low-spin relaxation in Fe(bpy)(3) and Fe(mtz)(6). Faraday Discussions, 237(0), 93-107. DOI: 10.1039/d2fd00027j
    Article's DOI: 10.1039/d2fd00027j
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2022
    Publication Type: Journal Publications
  • Keywords:

    Chemistry, Physical,Medicine (Miscellaneous),Physical and Theoretical Chemistry
    Crossover
    states
    deactivation
    Química
    Physical and theoretical chemistry
    Medicine (miscellaneous)
    Materiais
    Interdisciplinar
    Geociências
    Ciências biológicas ii
    Ciências ambientais
    Ciência de alimentos
    Chemistry, physical
    Biotecnología
    Astronomia / física
  • Documents:

  • Cerca a google

    Search to google scholar