Author, as appears in the article.: Ikram, Muhammad; Hafeez, Izan; Naz, Misbah; Haider, Ali; Naz, Sadia; Ul-Hamid, Anwar; Haider, Junaid; Shahzadi, Anum; Imran, Muhammad; Nabgan, Walid; Ali, Salamat;
Department: Enginyeria Química
URV's Author/s: Nabgan, Walid
Keywords: Water Photocatalytic activity Oxidation Optical-properties Nanowires Nanorods Metal nanoparticles Composites Cellulose nanocrystals Adsorption water oxidation optical-properties nanowires nanorods metal nanoparticles composites cellulose nanocrystals adsorption
Abstract: In this research, CuO nanostructures doped with Ag and cellulose nanocrystals (CNC) were synthesized using a facile coprecipitation technique. In this work, we doped Ag into fixed quantities of CNC and CuO to improve the photocatalytic, catalytic, and antibacterial activity. It was noted that catalytic activity increased upon doping, which was attributed to the formation of nanorods and a pH effect, while the reverse trend was observed in photocatalytic activity. The addition of Ag and CNC dopants into CuO improved the bactericidal efficacy for S. aureus and E. coli. In addition, to obtain insight into the possible mechanism behind their biocidal effects, molecular docking studies were conducted against specific enzyme targets: namely, dihydrofolate reductase from E. coli and DNA gyrase from S. aureus. This study suggested that codoped CuO could be highly efficient in the cleaning of polluted water and antibacterial applications.
Thematic Areas: Química Interdisciplinar General chemistry General chemical engineering Engenharias ii Ciências agrárias i Chemistry, multidisciplinary Chemistry (miscellaneous) Chemistry (all) Chemical engineering (miscellaneous) Chemical engineering (all)
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: walid.nabgan@urv.cat
Author identifier: 0000-0001-9901-862X
Record's date: 2024-09-07
Papper version: info:eu-repo/semantics/publishedVersion
Link to the original source: https://pubs.acs.org/doi/10.1021/acsomega.2c00240
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Papper original source: Acs Omega. 7 (20): 17043-17054
APA: Ikram, Muhammad; Hafeez, Izan; Naz, Misbah; Haider, Ali; Naz, Sadia; Ul-Hamid, Anwar; Haider, Junaid; Shahzadi, Anum; Imran, Muhammad; Nabgan, Walid; (2022). Highly Efficient Industrial Dye Degradation, Bactericidal Properties, and In Silico Molecular Docking Analysis of Ag/Cellulose-Doped CuO Nanostructures. Acs Omega, 7(20), 17043-17054. DOI: 10.1021/acsomega.2c00240
Article's DOI: 10.1021/acsomega.2c00240
Entity: Universitat Rovira i Virgili
Journal publication year: 2022
Publication Type: Journal Publications