Author, as appears in the article.: Jordá T; Barba-Aliaga M; Rozès N; Alepuz P; Martínez-Pastor MT; Puig S
Department: Bioquímica i Biotecnologia
URV's Author/s: Rozès, Nicolas Andre Louis
Keywords: Saccharomyces-cerevisiae yeast rox1 pathway heme expression activator hap1 absence
Abstract: Iron participates as an essential cofactor in the biosynthesis of critical cellular components, including DNA, proteins and lipids. The ergosterol biosynthetic pathway, which is an important target of antifungal treatments, depends on iron in four enzymatic steps. Our results in the model yeast Saccharomyces cerevisiae show that the expression of ergosterol biosynthesis (ERG) genes is tightly modulated by iron availability probably through the iron-dependent variation of sterol and heme levels. Whereas the transcription factors Upc2 and Ecm22 are responsible for the activation of ERG genes upon iron deficiency, the heme-dependent factor Hap1 triggers their Tup1-mediated transcriptional repression. The combined regulation by both activating and repressing regulatory factors allows for the fine-tuning of ERG transcript levels along the progress of iron deficiency, avoiding the accumulation of toxic sterol intermediates and enabling efficient adaptation to rapidly changing conditions. The lack of these regulatory factors leads to changes in the yeast sterol profile upon iron-deficient conditions. Both environmental iron availability and specific regulatory factors should be considered in ergosterol antifungal treatments.
Thematic Areas: Química Microbiology Medicina ii Medicina i Interdisciplinar Geografía Geociências General medicine Farmacia Engenharias iii Engenharias i Ecology, evolution, behavior and systematics Ecology Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Biotecnología Biodiversidade
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: nicolasrozes@urv.cat
Author identifier: 0000-0001-9718-3429
Record's date: 2024-09-07
Papper version: info:eu-repo/semantics/publishedVersion
Link to the original source: https://ami-journals.onlinelibrary.wiley.com/doi/full/10.1111/1462-2920.16157
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Papper original source: Environmental Microbiology. 24 (11): 5248-5260
APA: Jordá T; Barba-Aliaga M; Rozès N; Alepuz P; Martínez-Pastor MT; Puig S (2022). Transcriptional regulation of ergosterol biosynthesis genes in response to iron deficiency. Environmental Microbiology, 24(11), 5248-5260. DOI: 10.1111/1462-2920.16157
Article's DOI: 10.1111/1462-2920.16157
Entity: Universitat Rovira i Virgili
Journal publication year: 2022
Publication Type: Journal Publications