Articles producció científica> Enginyeria Química

Enhanced Photocatalytic Degradation with Sustainable CaO Nanorods Doped with Ce and Cellulose Nanocrystals: In Silico Molecular Docking Studies

  • Identification data

    Identifier: imarina:9280736
    Authors:
    Ikram MKhalid AShahzadi AHaider ANaz SNaz MShahzadi IUl-Hamid AHaider JNabgan WButt AR
    Abstract:
    This research work intends to evaluate the photoactivity of calcium oxide (CaO) nanorods (NRs) doped with cellulose nanocrystals (CNCs) and cerium (Ce). CNC-doped CaO and Ce/CNC codoped CaO were synthesized via the sol-gel technique. Structural, optical, morphological, physiochemical, phase constitution, and functional group evaluations were performed. The photodegradation of the prepared nanostructures was analyzed by observing photodegradation of a mixture of methylene blue and ciprofloxacin dye under light irradiation. The photocatalytic activity of the dye was drastically enhanced upon codoping in CaO. For both Escherichia coli and Staphylococcus aureus, statistically significant inhibitory zones (p < 0.05) were achieved in the case of CNCs and pristine and codoped CaO. Furthermore, in silico molecular docking studies (MDS) were accomplished against DNA gyrase from nucleic acid biosynthesis and enoyl-[acyl-carrier-protein] reductase (FabI) from the fatty acid biosynthetic pathway to rationalize the possible mechanism behind these antibacterial activities.
  • Others:

    Author, as appears in the article.: Ikram M; Khalid A; Shahzadi A; Haider A; Naz S; Naz M; Shahzadi I; Ul-Hamid A; Haider J; Nabgan W; Butt AR
    Department: Enginyeria Química
    URV's Author/s: Nabgan, Walid
    Keywords: Oxidation processes aops nanoparticles nanocomposite nanocatalyst hydrocarbons decomposition calcium-oxide biodiesel production
    Abstract: This research work intends to evaluate the photoactivity of calcium oxide (CaO) nanorods (NRs) doped with cellulose nanocrystals (CNCs) and cerium (Ce). CNC-doped CaO and Ce/CNC codoped CaO were synthesized via the sol-gel technique. Structural, optical, morphological, physiochemical, phase constitution, and functional group evaluations were performed. The photodegradation of the prepared nanostructures was analyzed by observing photodegradation of a mixture of methylene blue and ciprofloxacin dye under light irradiation. The photocatalytic activity of the dye was drastically enhanced upon codoping in CaO. For both Escherichia coli and Staphylococcus aureus, statistically significant inhibitory zones (p < 0.05) were achieved in the case of CNCs and pristine and codoped CaO. Furthermore, in silico molecular docking studies (MDS) were accomplished against DNA gyrase from nucleic acid biosynthesis and enoyl-[acyl-carrier-protein] reductase (FabI) from the fatty acid biosynthetic pathway to rationalize the possible mechanism behind these antibacterial activities.
    Thematic Areas: Química Interdisciplinar General chemistry General chemical engineering Engenharias ii Ciências agrárias i Chemistry, multidisciplinary Chemistry (miscellaneous) Chemistry (all) Chemical engineering (miscellaneous) Chemical engineering (all)
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    Author's mail: walid.nabgan@urv.cat
    Author identifier: 0000-0001-9901-862X
    Record's date: 2024-09-07
    Papper version: info:eu-repo/semantics/publishedVersion
    Link to the original source: https://pubs.acs.org/doi/10.1021/acsomega.2c02732
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Papper original source: Acs Omega. 7 (31): 27503-27515
    APA: Ikram M; Khalid A; Shahzadi A; Haider A; Naz S; Naz M; Shahzadi I; Ul-Hamid A; Haider J; Nabgan W; Butt AR (2022). Enhanced Photocatalytic Degradation with Sustainable CaO Nanorods Doped with Ce and Cellulose Nanocrystals: In Silico Molecular Docking Studies. Acs Omega, 7(31), 27503-27515. DOI: 10.1021/acsomega.2c02732
    Article's DOI: 10.1021/acsomega.2c02732
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2022
    Publication Type: Journal Publications
  • Keywords:

    Chemical Engineering (Miscellaneous),Chemistry (Miscellaneous),Chemistry, Multidisciplinary
    Oxidation processes aops
    nanoparticles
    nanocomposite
    nanocatalyst
    hydrocarbons
    decomposition
    calcium-oxide
    biodiesel production
    Química
    Interdisciplinar
    General chemistry
    General chemical engineering
    Engenharias ii
    Ciências agrárias i
    Chemistry, multidisciplinary
    Chemistry (miscellaneous)
    Chemistry (all)
    Chemical engineering (miscellaneous)
    Chemical engineering (all)
  • Documents:

  • Cerca a google

    Search to google scholar