Author, as appears in the article.: Sebastian Skardal, Per; Arenas, Alex
Department: Enginyeria Informàtica i Matemàtiques
URV's Author/s: Arenas Moreno, Alejandro
Keywords: Synthetic networks Synchronization Statistical model Self-consistency theory Quenched disorder Physiology Nonlinear system Nonlinear dynamics Nerve net Nerve cell network Models, statistical Models, neurological Link weights Humans Human Heterogeneous networks First-order phase transitions Feedback, physiological Feedback system Explosives Dynamical properties Coupled oscillators Cortical synchronization Computer simulation Biological rhythm Biological model Biological clocks Animals Animal Analytical results
Abstract: We study explosive synchronization, a phenomenon characterized by first-order phase transitions between incoherent and synchronized states in networks of coupled oscillators. While explosive synchronization has been the subject of many recent studies, in each case strong conditions on the heterogeneity of the network, its link weights, or its initial construction are imposed to engineer a first-order phase transition. This raises the question of how robust explosive synchronization is in view of more realistic structural and dynamical properties. Here we show that explosive synchronization can be induced in mildly heterogeneous networks by the addition of quenched disorder to the oscillators' frequencies, demonstrating that it is not only robust to, but moreover promoted by, this natural mechanism. We support these findings with numerical and analytical results, presenting simulations of a real neural network as well as a self-consistency theory used to study synthetic networks. © 2014 American Physical Society.
Thematic Areas: Zootecnia / recursos pesqueiros Statistics and probability Statistical and nonlinear physics Saúde coletiva Química Physics, mathematical Physics, fluids & plasmas Odontología Medicina ii Medicina i Materiais Matemática / probabilidade e estatística Interdisciplinar Geociências General medicine Farmacia Engenharias iv Engenharias iii Engenharias ii Educação física Educação Economia Condensed matter physics Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência da computação Biotecnología Biodiversidade Astronomia / física
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: alexandre.arenas@urv.cat
Author identifier: 0000-0003-0937-0334
Record's date: 2024-09-28
Papper version: info:eu-repo/semantics/submittedVersion
Link to the original source: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.89.062811
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Papper original source: Physical Review e. 89 (6): 062811-
APA: Sebastian Skardal, Per; Arenas, Alex (2014). Disorder induces explosive synchronization. Physical Review e, 89(6), 062811-. DOI: 10.1103/PhysRevE.89.062811
Article's DOI: 10.1103/PhysRevE.89.062811
Entity: Universitat Rovira i Virgili
Journal publication year: 2014
Publication Type: Journal Publications