Author, as appears in the article.: Wang Z; Mithieux SM; Vindin H; Wang Y; Zhang M; Liu L; Zbinden J; Blum KM; Yi T; Matsuzaki Y; Oveissi F; Akdemir R; Lockley KM; Zhang L; Ma K; Guan J; Waterhouse A; Pham NTH; Hawkett BS; Shinoka T; Breuer CK; Weiss AS
Department: Enginyeria Química
URV's Author/s: Akdemir, Reyda
Keywords: Vascular grafts Tropoelastin Tissue engineering Shear-stress Regenerative medicine Polyglycerol sebacate Nitric-oxide synthase Internal elastic lamina Hypertension Haploinsufficiency Expression Endothelium Elastin Elastic lamellae Collagen Blood-pressure
Abstract: Native arteries contain a distinctive intima-media composed of organized elastin and an adventitia containing mature collagen fibrils. In contrast, implanted biodegradable small-diameter vascular grafts do not present spatially regenerated, organized elastin. The elastin-containing structures within the intima-media region encompass the elastic lamellae (EL) and internal elastic lamina (IEL) and are crucial for normal arterial function. Here, the development of a novel electrospun small-diameter vascular graft that facilitates de novo formation of a structurally appropriate elastin-containing intima-media region following implantation is described. The graft comprises a non-porous microstructure characterized by tropoelastin fibers that are embedded in a PGS matrix. After implantation in mouse abdominal aorta, the graft develops distinct cell and extracellular matrix profiles that approximate the native adventitia and intima-media by 8 weeks. Within the newly formed intima-media region there are circumferentially aligned smooth muscle cell layers that alternate with multiple EL similar to that found in the arterial wall. By 8 months, the developed adventitia region contains mature collagen fibrils and the neoartery presents a distinct IEL with thickness comparable to that in mouse abdominal aorta. It is proposed that this new class of material can generate the critically required, organized elastin needed for arterial regeneration.
Thematic Areas: Química Physics, condensed matter Physics, applied Nanoscience and nanotechnology Nanoscience & nanotechnology Medicina ii Mechanics of materials Mechanical engineering Materials science, multidisciplinary Materials science (miscellaneous) Materials science (all) Materials science Materiais Interdisciplinar General materials science Engenharias iv Engenharias iii Engenharias ii Chemistry, physical Chemistry, multidisciplinary Astronomia / física
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: reyda.akdemir-@estudiants.urv.cat reyda.akdemir-@estudiants.urv.cat
Author identifier: 0000-0001-9359-5012 0000-0001-9359-5012
Record's date: 2024-09-07
Papper version: info:eu-repo/semantics/publishedVersion
Link to the original source: https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202205614
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Papper original source: Advanced Materials. 34 (47):
APA: Wang Z; Mithieux SM; Vindin H; Wang Y; Zhang M; Liu L; Zbinden J; Blum KM; Yi T; Matsuzaki Y; Oveissi F; Akdemir R; Lockley KM; Zhang L; Ma K; Guan J; (2022). Rapid Regeneration of a Neoartery with Elastic Lamellae. Advanced Materials, 34(47), -. DOI: 10.1002/adma.202205614
Article's DOI: 10.1002/adma.202205614
Entity: Universitat Rovira i Virgili
Journal publication year: 2022
Publication Type: Journal Publications