Articles producció científica> Enginyeria Química

Rapid Regeneration of a Neoartery with Elastic Lamellae

  • Identification data

    Identifier: imarina:9283387
    Authors:
    Wang ZMithieux SMVindin HWang YZhang MLiu LZbinden JBlum KMYi TMatsuzaki YOveissi FAkdemir RLockley KMZhang LMa KGuan JWaterhouse APham NTHHawkett BSShinoka TBreuer CKWeiss AS
    Abstract:
    Native arteries contain a distinctive intima-media composed of organized elastin and an adventitia containing mature collagen fibrils. In contrast, implanted biodegradable small-diameter vascular grafts do not present spatially regenerated, organized elastin. The elastin-containing structures within the intima-media region encompass the elastic lamellae (EL) and internal elastic lamina (IEL) and are crucial for normal arterial function. Here, the development of a novel electrospun small-diameter vascular graft that facilitates de novo formation of a structurally appropriate elastin-containing intima-media region following implantation is described. The graft comprises a non-porous microstructure characterized by tropoelastin fibers that are embedded in a PGS matrix. After implantation in mouse abdominal aorta, the graft develops distinct cell and extracellular matrix profiles that approximate the native adventitia and intima-media by 8 weeks. Within the newly formed intima-media region there are circumferentially aligned smooth muscle cell layers that alternate with multiple EL similar to that found in the arterial wall. By 8 months, the developed adventitia region contains mature collagen fibrils and the neoartery presents a distinct IEL with thickness comparable to that in mouse abdominal aorta. It is proposed that this new class of material can generate the critically required, organized elastin needed for arterial regeneration.
  • Others:

    Author, as appears in the article.: Wang Z; Mithieux SM; Vindin H; Wang Y; Zhang M; Liu L; Zbinden J; Blum KM; Yi T; Matsuzaki Y; Oveissi F; Akdemir R; Lockley KM; Zhang L; Ma K; Guan J; Waterhouse A; Pham NTH; Hawkett BS; Shinoka T; Breuer CK; Weiss AS
    Department: Enginyeria Química
    URV's Author/s: Akdemir, Reyda
    Keywords: Vascular grafts Tropoelastin Tissue engineering Shear-stress Regenerative medicine Polyglycerol sebacate Nitric-oxide synthase Internal elastic lamina Hypertension Haploinsufficiency Expression Endothelium Elastin Elastic lamellae Collagen Blood-pressure
    Abstract: Native arteries contain a distinctive intima-media composed of organized elastin and an adventitia containing mature collagen fibrils. In contrast, implanted biodegradable small-diameter vascular grafts do not present spatially regenerated, organized elastin. The elastin-containing structures within the intima-media region encompass the elastic lamellae (EL) and internal elastic lamina (IEL) and are crucial for normal arterial function. Here, the development of a novel electrospun small-diameter vascular graft that facilitates de novo formation of a structurally appropriate elastin-containing intima-media region following implantation is described. The graft comprises a non-porous microstructure characterized by tropoelastin fibers that are embedded in a PGS matrix. After implantation in mouse abdominal aorta, the graft develops distinct cell and extracellular matrix profiles that approximate the native adventitia and intima-media by 8 weeks. Within the newly formed intima-media region there are circumferentially aligned smooth muscle cell layers that alternate with multiple EL similar to that found in the arterial wall. By 8 months, the developed adventitia region contains mature collagen fibrils and the neoartery presents a distinct IEL with thickness comparable to that in mouse abdominal aorta. It is proposed that this new class of material can generate the critically required, organized elastin needed for arterial regeneration.
    Thematic Areas: Química Physics, condensed matter Physics, applied Nanoscience and nanotechnology Nanoscience & nanotechnology Medicina ii Mechanics of materials Mechanical engineering Materials science, multidisciplinary Materials science (miscellaneous) Materials science (all) Materials science Materiais Interdisciplinar General materials science Engenharias iv Engenharias iii Engenharias ii Chemistry, physical Chemistry, multidisciplinary Astronomia / física
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    Author's mail: reyda.akdemir-@estudiants.urv.cat reyda.akdemir-@estudiants.urv.cat
    Author identifier: 0000-0001-9359-5012 0000-0001-9359-5012
    Record's date: 2024-09-07
    Papper version: info:eu-repo/semantics/publishedVersion
    Link to the original source: https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202205614
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Papper original source: Advanced Materials. 34 (47):
    APA: Wang Z; Mithieux SM; Vindin H; Wang Y; Zhang M; Liu L; Zbinden J; Blum KM; Yi T; Matsuzaki Y; Oveissi F; Akdemir R; Lockley KM; Zhang L; Ma K; Guan J; (2022). Rapid Regeneration of a Neoartery with Elastic Lamellae. Advanced Materials, 34(47), -. DOI: 10.1002/adma.202205614
    Article's DOI: 10.1002/adma.202205614
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2022
    Publication Type: Journal Publications
  • Keywords:

    Chemistry, Multidisciplinary,Chemistry, Physical,Materials Science,Materials Science (Miscellaneous),Materials Science, Multidisciplinary,Mechanical Engineering,Mechanics of Materials,Nanoscience & Nanotechnology,Nanoscience and Nanotechnology,Physics, Applied,Physics, Condensed Matter
    Vascular grafts
    Tropoelastin
    Tissue engineering
    Shear-stress
    Regenerative medicine
    Polyglycerol sebacate
    Nitric-oxide synthase
    Internal elastic lamina
    Hypertension
    Haploinsufficiency
    Expression
    Endothelium
    Elastin
    Elastic lamellae
    Collagen
    Blood-pressure
    Química
    Physics, condensed matter
    Physics, applied
    Nanoscience and nanotechnology
    Nanoscience & nanotechnology
    Medicina ii
    Mechanics of materials
    Mechanical engineering
    Materials science, multidisciplinary
    Materials science (miscellaneous)
    Materials science (all)
    Materials science
    Materiais
    Interdisciplinar
    General materials science
    Engenharias iv
    Engenharias iii
    Engenharias ii
    Chemistry, physical
    Chemistry, multidisciplinary
    Astronomia / física
  • Documents:

  • Cerca a google

    Search to google scholar