Author, as appears in the article.: Castell A; Menoufi K; de Gracia A; Rincón L; Boer D; Cabeza LF
Department: Enginyeria Mecànica
URV's Author/s: Boer, Dieter-Thomas
Keywords: Weather conditions Using life Thermal energy storage (tes) Thermal energy Spain Phase change materials (pcms) Phase change materials Performance Overall benefit Operational phase Meteorology Manufacturing phase Manufacturing Life cycle assessment (lca) Life cycle analysis Life cycle Lca Insulation materials Heating Heat storage Global impacts Environmental impact Energy utilization Energy efficiency Energy consumption rates Energy conservation Cooling Construction systems Construction industry Components Climatization Climatic conditions Climate conditions Buildings Building-materials Brick
Abstract: An evaluation of the environmental impact of construction systems that are composed of facades based on alveolar bricks and macroencapsulated phase change materials done using Life Cycle Assessment (LCA) is presented. Their energy consumption rates for both heating and cooling have been measured and registered in two experimental cubicles located in Puigverd de Lleida (Spain). This work examines if the reduction of the environmental impact that is reached due to the energy savings achieved during the operational phase of these cubicles compensates the increase of the environmental impact that is induced during the manufacturing phase. Theoretical case studies, such as assuming different climatization and weather conditions, are proposed and studied to determine the most suitable climatic conditions for using the alveolar bricks and PCM technologies. Within the context of the LCA study, it is concluded that the overall benefit of PCM is the highest when summer weather conditions throughout the whole year is theoretically assumed, where for different assumed lifetime periods of the cubicles the reduction of the overall global impact of the cubicle containing PCM ranges from 12% to 14% in comparison to the other cubicle without PCM. © 2012 Elsevier Ltd.
Thematic Areas: Renewable energy, sustainability and the environment Química Nuclear energy and engineering Mechanical engineering Materiais Matemática / probabilidade e estatística Management, monitoring, policy and law Interdisciplinar Geociências General energy Fuel technology Farmacia Engineering, chemical Engenharias iv Engenharias iii Engenharias ii Engenharias i Energy engineering and power technology Energy (miscellaneous) Energy (all) Energy & fuels Economia Civil and structural engineering Ciências biológicas iii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Ciência da computação Building and construction Biotecnología Biodiversidade Arquitetura, urbanismo e design
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: dieter.boer@urv.cat
Author identifier: 0000-0002-5532-6409
Record's date: 2023-08-05
Papper version: info:eu-repo/semantics/acceptedVersion
Link to the original source: https://www.sciencedirect.com/science/article/abs/pii/S0306261912005119?via%3Dihub
Papper original source: Applied Energy. 101 600-608
APA: Castell A; Menoufi K; de Gracia A; Rincón L; Boer D; Cabeza LF (2013). Life Cycle Assessment of alveolar brick construction system incorporating phase change materials (PCMs). Applied Energy, 101(), 600-608. DOI: 10.1016/j.apenergy.2012.06.066
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Article's DOI: 10.1016/j.apenergy.2012.06.066
Entity: Universitat Rovira i Virgili
Journal publication year: 2013
Publication Type: Journal Publications