Articles producció científica> Enginyeria Química

Chitosan-Grafted Polyacrylic Acid-Doped Copper Oxide Nanoflakes Used as a Potential Dye Degrader and Antibacterial Agent: In Silico Molecular Docking Analysis

  • Identification data

    Identifier: imarina:9286886
  • Authors:

    Bilal M
    Ikram M
    Shujah T
    Haider A
    Naz S
    Ul-Hamid A
    Naz M
    Haider J
    Shahzadi I
    Nabgan W
  • Others:

    Author, as appears in the article.: Bilal M; Ikram M; Shujah T; Haider A; Naz S; Ul-Hamid A; Naz M; Haider J; Shahzadi I; Nabgan W
    Department: Enginyeria Química
    URV's Author/s: Nabgan, Walid
    Keywords: Polyethersulfone ultrafiltration membrane thin-films removal nanoparticles nanocomposite microspheres enhanced adsorption degradation cuo nanostructures catalytic-reduction
    Abstract: This study examined the catalytic and bactericidal properties of polymer-doped copper oxide (CuO). For this purpose, a facile co-precipitation method was used to synthesize CuO nanostructures doped with CS-g-PAA. Various concentrations (2, 4, and 6%) of dopants were systematically incorporated into a fixed amount of CuO. The prepared samples were analyzed by different optical, structural, and morphological characterizations. Field emission scanning electron microscopy and transmission electron microscopy micrographs indicated that doping transformed CuO's agglomerated rod-like surface morphology to form nanoflakes. UV-vis spectroscopy revealed that the optical spectra of the samples exhibit a redshift after doping, leading to a decrease in band gap energy from 3.3 to 2.5 eV. The purpose of the study was to test the catalytic activity of pristine and CS-g-PAA doped CuO for the degradation of methylene blue in acidic, basic, and neutral conditions using NaBH4 as a reducing agent in an aqueous medium. Furthermore, antibacterial activity was evaluated against Gram-positive and Gram-negative bacteria, namely, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Overall, enhanced bactericidal performance was observed upon doping CS-g-PAA into CuO, i.e., 4.25-6.15 and 4.40-8.15 mm against S. aureus and 1.35-4.20 and 2.25-5.25 mm against E. coli at the lowest and highest doses, respectively. The relevant catalytic and bactericidal action mechanisms of samples are also proposed in the study. Moreover, in silico molecular docking studies illustrated the role of these prepared nanomaterials as possible inhibitors of FabH and FabI enzymes of the fatty acid biosynthetic pathway.
    Thematic Areas: Química Interdisciplinar General chemistry General chemical engineering Engenharias ii Ciências agrárias i Chemistry, multidisciplinary Chemistry (miscellaneous) Chemistry (all) Chemical engineering (miscellaneous) Chemical engineering (all)
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    Author's mail: walid.nabgan@urv.cat
    Author identifier: 0000-0001-9901-862X
    Record's date: 2024-09-07
    Papper version: info:eu-repo/semantics/publishedVersion
    Link to the original source: https://pubs.acs.org/doi/full/10.1021/acsomega.2c05625
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Papper original source: Acs Omega. 7 (45): 41614-41626
    APA: Bilal M; Ikram M; Shujah T; Haider A; Naz S; Ul-Hamid A; Naz M; Haider J; Shahzadi I; Nabgan W (2022). Chitosan-Grafted Polyacrylic Acid-Doped Copper Oxide Nanoflakes Used as a Potential Dye Degrader and Antibacterial Agent: In Silico Molecular Docking Analysis. Acs Omega, 7(45), 41614-41626. DOI: 10.1021/acsomega.2c05625
    Article's DOI: 10.1021/acsomega.2c05625
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2022
    Publication Type: Journal Publications
  • Keywords:

    Chemical Engineering (Miscellaneous),Chemistry (Miscellaneous),Chemistry, Multidisciplinary
    Polyethersulfone ultrafiltration membrane
    thin-films
    removal
    nanoparticles
    nanocomposite
    microspheres
    enhanced adsorption
    degradation
    cuo nanostructures
    catalytic-reduction
    Química
    Interdisciplinar
    General chemistry
    General chemical engineering
    Engenharias ii
    Ciências agrárias i
    Chemistry, multidisciplinary
    Chemistry (miscellaneous)
    Chemistry (all)
    Chemical engineering (miscellaneous)
    Chemical engineering (all)
  • Documents:

  • Cerca a google

    Search to google scholar