Author, as appears in the article.: Ikram, Muhammad; Haider, Ali; Bibi, Syeda Tayaba; Ul-Hamid, Anwar; Haider, Junaid; Shahzadi, Iram; Nabgan, Walid; Moeen, Sawaira; Ali, Salamat; Goumri-Said, Souraya; Kanoun, Mohammed Benali;
Department: Enginyeria Química
URV's Author/s: Nabgan, Walid
Keywords: Starch Dye degradation
Abstract: In this work, aluminum/starch (St)-doped CaO nanoparticles (NPs) were synthesized by a co-precipitation method to degrade harmful dyes in various pH media. Systematic characterization was performed to investigate the influence of Al/St dopants on the composition, crystal structure, functional groups present, optical characteristics, and morphology of CaO NPs. Further hybrid density functional analyses corroborated that the band gap energy was reduced as the Al concentration in starch-doped CaO is increased. Optical absorption spectra of the synthesized materials revealed a redshift upon doping, which indicated depletion in the band gap energy of Al/St-doped CaO. PL spectroscopy showed that the intensity of CaO was reduced by the incorporation of Al and St assigned to minimum electron-hole pair recombination. Interlayer spacing and morphological features were determined by HR-TEM. HRTEM revealed that the control sample has cubic NPs and the incorporation of St showed overlapping around agglomerated NPs. The d-spacing of CaO was little enhanced by the inclusion of dopants. Experimental outcomes indicated that the addition of Co-dopants improved the catalytic potential of CaO NPs. Al (4%)/St-doped CaO NPs expressed a significant reduction of methylene blue in a basic environment. The maximum bactericidal performance was observed as 10.25 mm and 4.95 mm in the inhibition zone against S. aureus and E. coli, respectively, after the addition of Al and St in CaO.
Thematic Areas: Zootecnia / recursos pesqueiros Saúde coletiva Química Odontología Medicina veterinaria Medicina iii Medicina ii Medicina i Materiais Interdisciplinar Geociências General chemistry General chemical engineering Farmacia Ensino Engenharias iv Engenharias iii Engenharias ii Engenharias i Economia Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Ciência da computação Chemistry, multidisciplinary Chemistry (miscellaneous) Chemistry (all) Chemical engineering (miscellaneous) Chemical engineering (all) Biotecnología Biodiversidade Astronomia / física
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: walid.nabgan@urv.cat
Author identifier: 0000-0001-9901-862X
Record's date: 2024-09-07
Papper version: info:eu-repo/semantics/publishedVersion
Link to the original source: https://pubs.rsc.org/en/Content/ArticleLanding/2022/RA/D2RA06340A
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Papper original source: Rsc Advances. 12 (50): 32142-32155
APA: Ikram, Muhammad; Haider, Ali; Bibi, Syeda Tayaba; Ul-Hamid, Anwar; Haider, Junaid; Shahzadi, Iram; Nabgan, Walid; Moeen, Sawaira; Ali, Salamat; Goumri (2022). Synthesis of Al/starch co-doped in CaO nanoparticles for enhanced catalytic and antimicrobial activities: experimental and DFT approaches. Rsc Advances, 12(50), 32142-32155. DOI: 10.1039/d2ra06340a
Article's DOI: 10.1039/d2ra06340a
Entity: Universitat Rovira i Virgili
Journal publication year: 2022
Publication Type: Journal Publications