Author, as appears in the article.: Moreno A; Delgado-Lijarcio J; Ronda JC; Cádiz V; Galià M; Sipponen MH; Lligadas G
Department: Química Analítica i Química Orgànica
URV's Author/s: Cádiz Deleito, Maria Virginia / Galià Clua, Marina Teresa / Lligadas Puig, Gerard / Moreno Guerra, Adrian / Ronda Bargalló, Juan Carlos
Keywords: Stimuli-responsive Smart-materials Organic polymers Lignin nanoparticles Colloidal dispersions
Abstract: The design of stimuli-responsive lignin nanoparticles (LNPs) for advanced applications has hitherto been limited to the preparation of lignin-grafted polymers in which usually the lignin content is low (<25 wt.%) and its role is debatable. Here, the preparation of O2-responsive LNPs exceeding 75 wt.% in lignin content is shown. Softwood Kraft lignin (SKL) is coprecipitated with a modified SKL fluorinated oleic acid ester (SKL-OlF) to form colloidal stable hybrid LNPs (hy-LNPs). The hy-LNPs with a SKL-OlF content ranging from 10 to 50 wt.% demonstrated a reversible swelling behavior upon O2/N2 bubbling, increasing their size – ≈35% by volume – and changing their morphology from spherical to core-shell. Exposition of hy-LNPs to O2 bubbling promotes a polarity change on lignin-fluorinated oleic chains, and consequently their migration from the inner part to the surface of the particle, which not only increases the particle size but also endows hy-LNPs with enhanced stability under harsh conditions (pH < 2.5) by the hydration barrier effect. Furthermore, it is also demonstrated that these new stimuli-responsive particles as gas tunable nanoreactors for the synthesis of gold nanoparticles. Combining a straightforward preparation with their enhanced stability and responsiveness to O2 gas these new LNPs pave the way for the next generation of smart lignin-based nanomaterials.
Thematic Areas: Química Physics, condensed matter Physics, applied Nanoscience and nanotechnology Nanoscience & nanotechnology Medicine (miscellaneous) Materials science, multidisciplinary Materials science (miscellaneous) Materials science (all) Materiais Interdisciplinar General materials science General chemistry Engineering (miscellaneous) Engenharias ii Ciências biológicas i Chemistry, physical Chemistry, multidisciplinary Chemistry (miscellaneous) Chemistry (all) Biotecnología Biotechnology Biomaterials Astronomia / física
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: adrian.moreno@urv.cat marina.galia@urv.cat juancarlos.ronda@urv.cat gerard.lligadas@urv.cat
Author identifier: 0000-0002-4359-4510 0000-0002-0668-6600 0000-0002-8519-1840
Record's date: 2024-11-02
Papper version: info:eu-repo/semantics/publishedVersion
Link to the original source: https://onlinelibrary.wiley.com/doi/full/10.1002/smll.202205672
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Papper original source: Small. 19 (7): e2205672-
APA: Moreno A; Delgado-Lijarcio J; Ronda JC; Cádiz V; Galià M; Sipponen MH; Lligadas G (2023). Breathable Lignin Nanoparticles as Reversible Gas Swellable Nanoreactors. Small, 19(7), e2205672-. DOI: 10.1002/smll.202205672
Article's DOI: 10.1002/smll.202205672
Entity: Universitat Rovira i Virgili
Journal publication year: 2023
Publication Type: Journal Publications