Author, as appears in the article.: Saldivar-Espinoza, Bryan; Macip, Guillem; Garcia-Segura, Pol; Mestres-Truyol, Julia; Puigbo, Pere; Cereto-Massague, Adria; Pujadas, Gerard; Garcia-Vallve, Santiago;
Department: Bioquímica i Biotecnologia
URV's Author/s: Cereto Massagué, Adrián José / Garcia Vallve, Santiago / Macip Sancho, Guillem / PUIGBÒ AVALOS, PEDRO / Pujadas Anguiano, Gerard / Saldivar Espinoza, Bryan Percy
Keywords: Sars-cov-2 Mutations Machine learning Covid-19
Abstract: Predicting SARS-CoV-2 mutations is difficult, but predicting recurrent mutations driven by the host, such as those caused by host deaminases, is feasible. We used machine learning to predict which positions from the SARS-CoV-2 genome will hold a recurrent mutation and which mutations will be the most recurrent. We used data from April 2021 that we separated into three sets: a training set, a validation set, and an independent test set. For the test set, we obtained a specificity value of 0.69, a sensitivity value of 0.79, and an Area Under the Curve (AUC) of 0.8, showing that the prediction of recurrent SARS-CoV-2 mutations is feasible. Subsequently, we compared our predictions with updated data from January 2022, showing that some of the false positives in our prediction model become true positives later on. The most important variables detected by the model's Shapley Additive exPlanation (SHAP) are the nucleotide that mutates and RNA reactivity. This is consistent with the SARS-CoV-2 mutational bias pattern and the preference of some host deaminases for specific sequences and RNA secondary structures. We extend our investigation by analyzing the mutations from the variants of concern Alpha, Beta, Delta, Gamma, and Omicron. Finally, we analyzed amino acid changes by looking at the predicted recurrent mutations in the M-pro and spike proteins.
Thematic Areas: Zootecnia / recursos pesqueiros Spectroscopy Saúde coletiva Química Psicología Physical and theoretical chemistry Organic chemistry Odontología Nutrição Molecular biology Medicine (miscellaneous) Medicina veterinaria Medicina iii Medicina ii Medicina i Materiais Interdisciplinar Inorganic chemistry Geociências Farmacia Engenharias iv Engenharias ii Engenharias i Educação física Computer science applications Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Ciência da computação Chemistry, multidisciplinary Catalysis Biotecnología Biodiversidade Biochemistry & molecular biology Astronomia / física
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: adrianjose.cereto@urv.cat bryanpercy.saldivar@estudiants.urv.cat bryanpercy.saldivar@estudiants.urv.cat guillem.macip@estudiants.urv.cat guillem.macip@estudiants.urv.cat santi.garcia-vallve@urv.cat gerard.pujadas@urv.cat
Author identifier: 0000-0002-9667-2818 0000-0002-9667-2818 0000-0002-0348-7497 0000-0003-2598-8089
Record's date: 2024-09-07
Papper version: info:eu-repo/semantics/publishedVersion
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Papper original source: International Journal Of Molecular Sciences. 23 (23):
APA: Saldivar-Espinoza, Bryan; Macip, Guillem; Garcia-Segura, Pol; Mestres-Truyol, Julia; Puigbo, Pere; Cereto-Massague, Adria; Pujadas, Gerard; Garcia-Val (2022). Prediction of Recurrent Mutations in SARS-CoV-2 Using Artificial Neural Networks. International Journal Of Molecular Sciences, 23(23), -. DOI: 10.3390/ijms232314683
Entity: Universitat Rovira i Virgili
Journal publication year: 2022
Publication Type: Journal Publications