Author, as appears in the article.: Curti, M; Maffeis, V; Duarte, LGTA; Shareef, S; Hallado, LX; Curutchet, C; Romero, E
Department: Química Física i Inorgànica
URV's Author/s: Hallado Abaunza, Luisa Xiomara / Shareef, Saeed
Keywords: Molecular-dynamics simulations Molecular dynamics De novo protein design Cofactor binding Artificial photosynthesis states stability spectroscopy molecular dynamics energy-transfer de-novo design de novo protein design complex ii cofactor binding
Abstract: In photosynthesis, pigment - protein complexes achieve outstanding photoinduced charge separation efficiencies through a set of strategies in which excited states delocalisation over multiple pigments ('excitons') and charge-transfer states play key roles. These concepts, and their implementation in bioinspired artificial systems, are attracting increasing attention due to the vast potential that could be tapped by realising efficient photochemical reactions. In particular, de novo designed proteins provide a diverse structural toolbox that can be used to manipulate the geometric and electronic properties of bound chromophore molecules. However, achieving excitonic and charge-transfer states requires closely spaced chromophores, a non-trivial aspect since a strong binding with the protein matrix needs to be maintained. Here, we show how a general-purpose artificial protein can be optimised via molecular dynamics simulations to improve its binding capacity of a chlorophyll derivative, achieving complexes in which chromophores form two closely spaced and strongly interacting dimers. Based on spectroscopy results and computational modelling, we demonstrate each dimer is excitonically coupled, and propose they display signatures of charge-transfer state mixing. This work could open new avenues for the rational design of chromophore - protein complexes with advanced functionalities. This article is protected by copyright. All rights reserved.© 2023 The Protein Society.
Thematic Areas: Química Molecular biology Medicine (miscellaneous) Interdisciplinar Farmacia Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Biotecnología Biochemistry & molecular biology Biochemistry
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: luisaxiomara.hallado@estudiants.urv.cat saeed.shareef@estudiants.urv.cat
Author identifier: 0000-0002-8412-1939
Record's date: 2024-08-03
Papper version: info:eu-repo/semantics/publishedVersion
Link to the original source: https://onlinelibrary.wiley.com/doi/full/10.1002/pro.4579
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Papper original source: Protein Science. 32 (3): e4579-e4579
APA: Curti, M; Maffeis, V; Duarte, LGTA; Shareef, S; Hallado, LX; Curutchet, C; Romero, E (2023). Engineering Excitonically-Coupled Dimers in an Artificial Protein for Light Harvesting via Computational Modelling. Protein Science, 32(3), e4579-e4579. DOI: 10.1002/pro.4579
Article's DOI: 10.1002/pro.4579
Entity: Universitat Rovira i Virgili
Journal publication year: 2023
Publication Type: Journal Publications