Author, as appears in the article.: Nabgan, Walid; Abdullah, T A Tuan; Ikram, M; Owgi, A H K; Hatta, A H; Alhassan, M; Aziz, F F A; Jalil, A A; Van Tran, Thuan; Djellabi, Ridha
Department: Enginyeria Química
URV's Author/s: Djellabi, Ridha / Nabgan, Walid
Keywords: Trimetallic Ni-la-pd Hydrogen Cellulose Bio-polymer Bimetallic catalysts trimetallic surface structure dependence stability polyethylene nickel ni-la-pd methane hydrogen ftir ethanol desorption bio-polymer
Abstract: Hydrogen and liquid fuel production from biopolymer waste, such as cellulose dissolved in phenol, was investigated using in-situ pyrolysis-catalytic steam reforming conditions. Developing a sustainable method for the thermal cracking of such biopolymers still faces difficulties due to the catalyst stability primarily impacted by coke deposition. The key to the proposed method is improving a highly active and stable catalytic reforming process in which trimetallic Ni-La-Pd supported on TiCa acts as a primary reforming catalyst. Catalysts were prepared by hydrothermal, and impregnation techniques, and the physicochemical characteristics of the fresh and spent materials were examined. The results showed that the NLP/TiCa catalysts performed effectively due to their comparatively high surface area, strong basicity, evenly distributed Pd particles, and appropriate redox and desorption characteristics. The addition of Pd retards the reducibility of the NL/TiCa; therefore, a Pd∗La, La∗Ni, La∗Ti, and Ca∗Ti interaction exist. Almost complete conversion of phenol (98.7%) and maximum H2 yield (99.6%) were achieved at 800 °C for the NLP/TiCa. These findings give an insight into industrial-scale development. They have significant potential for enhancing the generation of hydrogen and liquid products from phenol and cellulose waste, such as propanol, ethanol, toluene, etc.
Thematic Areas: Waste management and disposal Química Process chemistry and technology Pollution Materiais Matemática / probabilidade e estatística Interdisciplinar Farmacia Engineering, environmental Engineering, chemical Engenharias iv Engenharias iii Engenharias ii Engenharias i Ciências ambientais Ciências agrárias i Ciência de alimentos Chemical engineering (miscellaneous) Biotecnología Astronomia / física
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: walid.nabgan@urv.cat
Author identifier: 0000-0001-9901-862X
Record's date: 2024-10-12
Papper version: info:eu-repo/semantics/publishedVersion
Link to the original source: https://www.sciencedirect.com/science/article/pii/S2213343723000507
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Papper original source: Journal Of Environmental Chemical Engineering. 11 (2): 109311-
APA: Nabgan, Walid; Abdullah, T A Tuan; Ikram, M; Owgi, A H K; Hatta, A H; Alhassan, M; Aziz, F F A; Jalil, A A; Van Tran, Thuan; Djellabi, Ridha (2023). Hydrogen and valuable liquid fuel production from the in-situ pyrolysis-catalytic steam reforming reactions of cellulose bio-polymer wastes dissolved in phenol over trimetallic Ni-La-Pd/TiCa nanocatalysts. Journal Of Environmental Chemical Engineering, 11(2), 109311-. DOI: 10.1016/j.jece.2023.109311
Article's DOI: 10.1016/j.jece.2023.109311
Entity: Universitat Rovira i Virgili
Journal publication year: 2023
Publication Type: Journal Publications