Author, as appears in the article.: S Bermudo; JM Rodríguez; JA Rodríguez-Velázquez; JM Sigarreta
Department: Enginyeria Informàtica i Matemàtiques
URV's Author/s: Rodríguez Velázquez, Juan Alberto
Keywords: Super domination number Metric dimension Location-domination number Independence number Adjacency dimension
Abstract: It is known that the problem of computing the adjacency dimension of a graph is NP-hard. This suggests finding the adjacency dimension for special classes of graphs or obtaining good bounds on this invariant. In this work we obtain general bounds on the adjacency dimension of a graph G in terms of known parameters of G. We discuss the tightness of these bounds and, for some particular classes of graphs, we obtain closed formulae. In particular, we show the close relationships that exist between the adjacency dimension and other parameters, like the domination number, the location-domination number, the 2-domination number, the independent 2-domination number, the vertex cover number, the independence number and the super domination number.
Thematic Areas: Theoretical computer science Mathematics, applied Mathematics Matemática / probabilidade e estatística Geometry and topology Discrete mathematics and combinatorics Algebra and number theory
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: juanalberto.rodriguez@urv.cat
Author identifier: 0000-0002-9082-7647
Record's date: 2024-10-26
Papper version: info:eu-repo/semantics/publishedVersion
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Papper original source: Ars Mathematica Contemporanea. 22 (3), # P3. 02-16 pp. (3):
APA: S Bermudo; JM Rodríguez; JA Rodríguez-Velázquez; JM Sigarreta (2022). The adjacency dimension of graphs. Ars Mathematica Contemporanea, 22 (3), # P3. 02-16 pp.(3), -. DOI: 10.26493/1855-3974.2496.07a
Entity: Universitat Rovira i Virgili
Journal publication year: 2022
Publication Type: Journal Publications