Author, as appears in the article.: Habib, A; Ikram, M; Haider, A; Ul-Hamid, A; Shahzadi, I; Haider, J; Kanoun, MB; Goumri-Said, S; Nabgan, W
Department: Enginyeria Química
URV's Author/s: Nabgan, Walid
Keywords: Water Removal Photocatalysis Performance Nanosheets Nanoparticles Graphene Extract Driven Bismuth
Abstract: In the present study, different concentrations (1 and 3%) of Bi were incorporated into a fixed amount of molybdenum disulfide (MoS2) and SnO2 quantum dots (QDs) by co-precipitation technique. This research aimed to increase the efficacy of dye degradation and bactericidal behavior of SnO2. The high recombination rate of SnO2 can be decreased upon doping with two-dimensional materials (MoS2 nanosheets) and Bi metal. These binary dopants-based SnO2 showed a significant role in methylene blue (MB) dye degradation in various pH media and antimicrobial potential as more active sites are provided by nanostructured MoS2 and Bi3+ is responsible for producing a variety of different oxygen vacancies within SnO2. The prepared QDs were described via morphology, optical characteristics, elemental composition, functional group, phase formation, crystallinity, and d-spacing. In contrast, antimicrobial activity was checked at high and low dosages against Escherichia coli (E. coli) and the inhibition zone was calculated utilizing a Vernier caliper. Furthermore, prepared samples have expressed substantial antimicrobial effects against E. coli. To further explore the interactions between the MB and Bi/MoS2-SnO2 composite, we modeled and calculated the MB adsorption using density functional theory and the Heyd-Scuseria-Ernzerhof hybrid (HSE06) approach. There is a relatively strong interaction between the MB molecule and Bi/MoS2-SnO2 composite.
Thematic Areas: Zootecnia / recursos pesqueiros Saúde coletiva Química Odontología Medicina veterinaria Medicina iii Medicina ii Medicina i Materiais Interdisciplinar Geociências General chemistry General chemical engineering Farmacia Ensino Engenharias iv Engenharias iii Engenharias ii Engenharias i Economia Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Ciência da computação Chemistry, multidisciplinary Chemistry (miscellaneous) Chemistry (all) Chemical engineering (miscellaneous) Chemical engineering (all) Biotecnología Biodiversidade Astronomia / física
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: walid.nabgan@urv.cat
Author identifier: 0000-0001-9901-862X
Record's date: 2024-08-03
Papper version: info:eu-repo/semantics/publishedVersion
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Papper original source: Rsc Advances. 13 (16): 10861-10872
APA: Habib, A; Ikram, M; Haider, A; Ul-Hamid, A; Shahzadi, I; Haider, J; Kanoun, MB; Goumri-Said, S; Nabgan, W (2023). Experimental and theoretical study of catalytic dye degradation and bactericidal potential of multiple phase Bi and MoS2 doped SnO2 quantum dots. Rsc Advances, 13(16), 10861-10872. DOI: 10.1039/d3ra00698k
Entity: Universitat Rovira i Virgili
Journal publication year: 2023
Publication Type: Journal Publications