Articles producció científica> Ciències Mèdiques Bàsiques

Morphological Integration on the Calcaneum of Domestic Sheep (Ovis aries Linnaeus, 1758)—A Geometric Morphometric Study

  • Identification data

    Identifier: imarina:9295701
    Authors:
    Parés-Casanova, PMRissech, CDavis, SLloveras, L
    Abstract:
    Morphological integration and modularity refer to the degree of covariation between the different components of an anatomical structure. Modularity refers to structures that have components which covary strongly, but at the same time are relatively independent. Integration refers to the coordinated variation of the components of a functional anatomical structure. The hindlimb basipodium is a complex functional structure. The integration of its parts must arise from a coordinated development and functionality. Our objective in this study was to study the levels of integration of two modules on the calcaneum in domestic sheep. The calcaneum develops from two different centres. One gives rise to the body and its process while the other gives rise to the distal half of the bone. The hypothesis of modularity of two parts of the calcaneum was tested using the Escoufier RV coefficient and an analysis of two blocks of Partial Least Squares. These allowed us to evaluate the level of morphological integration. For this purpose, digital images of the medial aspect of complete calcanea of 47 domestic sheep (Ovis aries) were used. Twenty 2D coordinates of homologous anatomical landmarks (4 for the body and the process and 16 for the distal half of the bone) were collected as morphometric data. These were studied using geometric morphometrics. The results indicated good evidence of modular organization and a medium morphological integration between the two modules. Thus, according to our results, the two modules seem to exist and behave in a rather independent way. They appear to share functions rather than precursors of development. This study is important in order to elucidate the underlying factors in the processes of the development of the sheep calcaneum.
  • Others:

    Author, as appears in the article.: Parés-Casanova, PM; Rissech, C; Davis, S; Lloveras, L
    Department: Ciències Mèdiques Bàsiques
    URV's Author/s: Rissech Badalló, Maria del Carmen
    Keywords: Tarsus Small ruminants Sheep Ontogeny Modularity Basipodium tarsus small ruminants sheep ontogeny modularity
    Abstract: Morphological integration and modularity refer to the degree of covariation between the different components of an anatomical structure. Modularity refers to structures that have components which covary strongly, but at the same time are relatively independent. Integration refers to the coordinated variation of the components of a functional anatomical structure. The hindlimb basipodium is a complex functional structure. The integration of its parts must arise from a coordinated development and functionality. Our objective in this study was to study the levels of integration of two modules on the calcaneum in domestic sheep. The calcaneum develops from two different centres. One gives rise to the body and its process while the other gives rise to the distal half of the bone. The hypothesis of modularity of two parts of the calcaneum was tested using the Escoufier RV coefficient and an analysis of two blocks of Partial Least Squares. These allowed us to evaluate the level of morphological integration. For this purpose, digital images of the medial aspect of complete calcanea of 47 domestic sheep (Ovis aries) were used. Twenty 2D coordinates of homologous anatomical landmarks (4 for the body and the process and 16 for the distal half of the bone) were collected as morphometric data. These were studied using geometric morphometrics. The results indicated good evidence of modular organization and a medium morphological integration between the two modules. Thus, according to our results, the two modules seem to exist and behave in a rather independent way. They appear to share functions rather than precursors of development. This study is important in order to elucidate the underlying factors in the processes of the development of the sheep calcaneum.
    Thematic Areas: Química Process chemistry and technology Physics, applied Materials science, multidisciplinary Materials science (miscellaneous) Materials science (all) Materiais Instrumentation General materials science General engineering Fluid flow and transfer processes Engineering, multidisciplinary Engineering (miscellaneous) Engineering (all) Engenharias ii Engenharias i Computer science applications Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências agrárias i Ciência de alimentos Chemistry, multidisciplinary Biodiversidade Astronomia / física
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    Author's mail: carme.rissech@urv.cat
    Author identifier: 0000-0002-1014-8813
    Record's date: 2024-08-03
    Papper version: info:eu-repo/semantics/publishedVersion
    Link to the original source: https://www.mdpi.com/2076-3417/13/7/4177
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Papper original source: Applied Sciences-Basel. 13 (7):
    APA: Parés-Casanova, PM; Rissech, C; Davis, S; Lloveras, L (2023). Morphological Integration on the Calcaneum of Domestic Sheep (Ovis aries Linnaeus, 1758)—A Geometric Morphometric Study. Applied Sciences-Basel, 13(7), -. DOI: 10.3390/app13074177
    Article's DOI: 10.3390/app13074177
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2023
    Publication Type: Journal Publications
  • Keywords:

    Chemistry, Multidisciplinary,Computer Science Applications,Engineering (Miscellaneous),Engineering, Multidisciplinary,Fluid Flow and Transfer Processes,Instrumentation,Materials Science (Miscellaneous),Materials Science, Multidisciplinary,Physics, Applied,Process Chemistry and Technology
    Tarsus
    Small ruminants
    Sheep
    Ontogeny
    Modularity
    Basipodium
    tarsus
    small ruminants
    sheep
    ontogeny
    modularity
    Química
    Process chemistry and technology
    Physics, applied
    Materials science, multidisciplinary
    Materials science (miscellaneous)
    Materials science (all)
    Materiais
    Instrumentation
    General materials science
    General engineering
    Fluid flow and transfer processes
    Engineering, multidisciplinary
    Engineering (miscellaneous)
    Engineering (all)
    Engenharias ii
    Engenharias i
    Computer science applications
    Ciências biológicas iii
    Ciências biológicas ii
    Ciências biológicas i
    Ciências agrárias i
    Ciência de alimentos
    Chemistry, multidisciplinary
    Biodiversidade
    Astronomia / física
  • Documents:

  • Cerca a google

    Search to google scholar