Author, as appears in the article.: Kacem, Khaoula; Casanova-Chafer, Juan; Hamrouni, Abdessalem; Ameur, Sami; Guell, Frank; Nsib, Mohamed Faouzi; Llobet, Eduard
Department: Enginyeria Electrònica, Elèctrica i Automàtica
URV's Author/s: Casanova Chafer, Juan / Llobet Valero, Eduard
Keywords: Zno–tio /rgo 2 Zno-tio2 Solar light Photocatalysis Indigo carmine Hydroxylation Graphene oxide nanocomposites water solar light rgo removal pollutants photocatalytic degradation photocatalysis nanoparticles indigo carmine hydroxylation efficient composites antibacterial
Abstract: To overcome the limitations of ZnO as a photocatalyst, the present work reports a ternary nanocomposite (ZnO–TiO2/rGO) with a high photocatalytic activity under direct natural solar light irradiation. Reduced graphene oxide (rGO) was obtained after bio-reduction of GO using pomegranate peels. Techniques of FE-SEM, TEM, XRD, FTIR, UV–Vis DRS, Raman and PL were used for characterization purpose. The ternary nanocomposite exhibited a high photocatalytic activity towards the degradation of indigo carmine dye, resulting in an efficiency of 92% within 150 min under sunlight illumination. Accordingly, the hybridization of ZnO with TiO2 and rGO improves light absorption, promotes high separation of photogenerated charges, and solves the photocorrosion drawback of ZnO, leading to a better stability and reusability of the nanocomposite. Particularly, the prepared rGO allowed certain hydrophilicity and a better surface hydroxylation. In view of that, a comprehensive photocatalytic mechanism was proposed and discussed, referred to experiments showing the effect of holes and •OH scavengers. The findings revealed that the developed rGO hybridized with ZnO–TiO2 heterojunction can be a promising candidate for removing environmental contaminations using natural solar light.
Thematic Areas: Química Mechanics of materials Materials science, multidisciplinary Materials science (miscellaneous) Materials science (all) Materials science Materiais Interdisciplinar General materials science Engenharias ii Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Biodiversidade Astronomia / física
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: juan.casanova@urv.cat eduard.llobet@urv.cat
Author identifier: 0000-0001-6164-4342
Record's date: 2024-10-12
Papper version: info:eu-repo/semantics/publishedVersion
Link to the original source: https://link.springer.com/article/10.1007/s12034-023-02913-7
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Papper original source: Bulletin Of Materials Science. 46 (2): 83-
APA: Kacem, Khaoula; Casanova-Chafer, Juan; Hamrouni, Abdessalem; Ameur, Sami; Guell, Frank; Nsib, Mohamed Faouzi; Llobet, Eduard (2023). ZnO–TiO2/rGO heterostructure for enhanced photodegradation of IC dye under natural solar light and role of rGO in surface hydroxylation. Bulletin Of Materials Science, 46(2), 83-. DOI: 10.1007/s12034-023-02913-7
Article's DOI: 10.1007/s12034-023-02913-7
Entity: Universitat Rovira i Virgili
Journal publication year: 2023
Publication Type: Journal Publications