Articles producció científica> Enginyeria Química

Carbon footprint of low-energy buildings in the United Kingdom: Effects of mitigating technological pathways and decarbonization strategies

  • Identification data

    Identifier: imarina:9296469
    Authors:
    Norouzi, MHaddad, ANJiménez, LHoseinzadeh, SBoer, D
    Abstract:
    There is a limited comprehensive analysis of the effectiveness of adopted carbon mitigation strategies for buildings over their life cycle, that are concerned with temporal perspectives of emissions. Accordingly, this paper explores a life cycle assessment (LCA) to address the concerns regarding mitigating the carbon footprint of a UK timber-frame low-energy dwelling. In particular, it aims to investigate the potential greenhouse gas (GHG) emission reduction in terms of three different heating and ventilation options, and to analyze the influence of decarbonization of electricity production as well as the technological progress of the waste treatment of timber on the building's environmental performance. Thus, the whole life‑carbon of the building case studies was evaluated for a total of eight investigated prospective scenarios, and they were compared to the LCA results of the baseline scenario, where the existing technology and context remained constant over time. Results show that using a compact heat pump would lead to a significant whole life-cycle emission reduction of the dwelling, by 19 %; while GHG emission savings can be reinforced if the assessed systems are employed simultaneously with grid decarbonization, exhibiting a 25 %–60 % reduction compared to the baseline scenario. Moreover, technological changes in the waste treatments of timber products could substantially reduce the buildings' embodied emissions, representing 3 %–23 %. From these emission-saving measures, the contribution of material efficiency strategies to achieve more embodied carbon savings should be highlighted in future construction practices.
  • Others:

    Author, as appears in the article.: Norouzi, M; Haddad, AN; Jiménez, L; Hoseinzadeh, S; Boer, D
    Department: Enginyeria Química Enginyeria Mecànica
    URV's Author/s: Boer, Dieter-Thomas / Jiménez Esteller, Laureano / Norouzi, Masoud
    Keywords: Timber Low-energy building Life-cycle assessment Life cycle assessment Decarbonization strategy Carbon footprint timber low -energy building lessons heat-pumps greenhouse-gas emissions environmental-impact assessment embodied carbon dynamic lca decarbonization strategy construction carbon footprint biogenic carbon
    Abstract: There is a limited comprehensive analysis of the effectiveness of adopted carbon mitigation strategies for buildings over their life cycle, that are concerned with temporal perspectives of emissions. Accordingly, this paper explores a life cycle assessment (LCA) to address the concerns regarding mitigating the carbon footprint of a UK timber-frame low-energy dwelling. In particular, it aims to investigate the potential greenhouse gas (GHG) emission reduction in terms of three different heating and ventilation options, and to analyze the influence of decarbonization of electricity production as well as the technological progress of the waste treatment of timber on the building's environmental performance. Thus, the whole life‑carbon of the building case studies was evaluated for a total of eight investigated prospective scenarios, and they were compared to the LCA results of the baseline scenario, where the existing technology and context remained constant over time. Results show that using a compact heat pump would lead to a significant whole life-cycle emission reduction of the dwelling, by 19 %; while GHG emission savings can be reinforced if the assessed systems are employed simultaneously with grid decarbonization, exhibiting a 25 %–60 % reduction compared to the baseline scenario. Moreover, technological changes in the waste treatments of timber products could substantially reduce the buildings' embodied emissions, representing 3 %–23 %. From these emission-saving measures, the contribution of material efficiency strategies to achieve more embodied carbon savings should be highlighted in future construction practices.
    Thematic Areas: Zootecnia / recursos pesqueiros Waste management and disposal Saúde coletiva Química Pollution Odontología Nutrição Medicina veterinaria Medicina iii Medicina ii Medicina i Materiais Matemática / probabilidade e estatística Interdisciplinar Historia Geografía Geociências Farmacia Environmental sciences Environmental engineering Environmental chemistry Ensino Engenharias iii Engenharias ii Engenharias i Enfermagem Direito Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Ciência da computação Biotecnología Biodiversidade Astronomia / física
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    Author's mail: masoud.norouzi@urv.cat dieter.boer@urv.cat laureano.jimenez@urv.cat
    Author identifier: 0000-0002-5532-6409 0000-0002-3186-7235
    Record's date: 2024-08-03
    Papper version: info:eu-repo/semantics/publishedVersion
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Papper original source: Science Of The Total Environment. 882 163490-
    APA: Norouzi, M; Haddad, AN; Jiménez, L; Hoseinzadeh, S; Boer, D (2023). Carbon footprint of low-energy buildings in the United Kingdom: Effects of mitigating technological pathways and decarbonization strategies. Science Of The Total Environment, 882(), 163490-. DOI: 10.1016/j.scitotenv.2023.163490
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2023
    Publication Type: Journal Publications
  • Keywords:

    Environmental Chemistry,Environmental Engineering,Environmental Sciences,Pollution,Waste Management and Disposal
    Timber
    Low-energy building
    Life-cycle assessment
    Life cycle assessment
    Decarbonization strategy
    Carbon footprint
    timber
    low -energy building
    lessons
    heat-pumps
    greenhouse-gas emissions
    environmental-impact assessment
    embodied carbon
    dynamic lca
    decarbonization strategy
    construction
    carbon footprint
    biogenic carbon
    Zootecnia / recursos pesqueiros
    Waste management and disposal
    Saúde coletiva
    Química
    Pollution
    Odontología
    Nutrição
    Medicina veterinaria
    Medicina iii
    Medicina ii
    Medicina i
    Materiais
    Matemática / probabilidade e estatística
    Interdisciplinar
    Historia
    Geografía
    Geociências
    Farmacia
    Environmental sciences
    Environmental engineering
    Environmental chemistry
    Ensino
    Engenharias iii
    Engenharias ii
    Engenharias i
    Enfermagem
    Direito
    Ciências biológicas iii
    Ciências biológicas ii
    Ciências biológicas i
    Ciências ambientais
    Ciências agrárias i
    Ciência de alimentos
    Ciência da computação
    Biotecnología
    Biodiversidade
    Astronomia / física
  • Documents:

  • Cerca a google

    Search to google scholar