Author, as appears in the article.: Aboagye, Dominic; Djellabi, Ridha; Medina, Francesc; Contreras, Sandra
Department: Enginyeria Química
URV's Author/s: Aboagye, Dominic / Contreras Iglesias, Sandra / Djellabi, Ridha / Medina Cabello, Francisco
Keywords: Value-added chemicals Radical oxygen species Photocatalysis Lignocellulose Hydrogen * photocatalysis * lignocellulose * radical oxygen species * value-added chemicals Hydrogen
Abstract: Photocatalytic biomass conversion into high-value chemicals and fuels is considered one of the hottest ongoing research and industrial topics toward sustainable development. In short, this process can cleave Cβ-O/Cα-Cβ bonds in lignin to aromatic platform chemicals, and further conversion of the polysaccharides to other platform chemicals and H2. From the chemistry point of view, the optimization of the unique cooperative interplay of radical oxidation species (which are activated via molecular oxygen species, ROSs) and substrate-derived radical intermediates by appropriate control of their type and/or yield is key to the selective production of desired products. Technically, several challenges have been raised that face successful real-world applications. This review aims to discuss the recently reported mechanistic pathways toward selective biomass conversion through the optimization of ROSs behavior and materials/system design. On top of that, through a SWOT analysis, we critically discussed this technology from both chemistry and technological viewpoints to help the scientists and engineers bridge the gap between lab-scale and large-scale production.© 2023 Wiley-VCH GmbH.
Thematic Areas: Química Medicina ii Medicina i Materiais Interdisciplinar General medicine General chemistry Farmacia Engenharias ii Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Chemistry, multidisciplinary Chemistry (miscellaneous) Chemistry (all) Chemistry Catalysis Astronomia / física
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: dominic.aboagye@estudiants.urv.cat dominic.aboagye@estudiants.urv.cat sandra.contreras@urv.cat francesc.medina@urv.cat
Author identifier: 0000-0001-8917-4733 0000-0002-3111-1542
Record's date: 2024-10-12
Papper version: info:eu-repo/semantics/publishedVersion
Link to the original source: https://onlinelibrary.wiley.com/doi/10.1002/anie.202301909
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Papper original source: Angewandte Chemie (International Ed. Print). 62 (36): e202301909-e202301909
APA: Aboagye, Dominic; Djellabi, Ridha; Medina, Francesc; Contreras, Sandra (2023). Unlocking the Potential of Radical-mediated Photocatalysis for Lignocellulosic Biomass Conversion into Value-added Chemicals and Hydrogen: Facts, Opportunities and Challenges. Angewandte Chemie (International Ed. Print), 62(36), e202301909-e202301909. DOI: 10.1002/anie.202301909
Article's DOI: 10.1002/anie.202301909
Entity: Universitat Rovira i Virgili
Journal publication year: 2023
Publication Type: Journal Publications