Articles producció científica> Enginyeria Química

Experimental and DFT study of GO-decorated CaO quantum dots for catalytic dye degradation and bactericidal potential

  • Identification data

    Identifier: imarina:9321797
  • Authors:

    Khan, M
    Ikram, M
    Haider, A
    Ul-Hamid, A
    Ullah, H
    Shahzadi, I
    Khan, S
    Kanoun, MB
    Goumri-Said, S
    Medina, F
    Nabgan, W
  • Others:

    Author, as appears in the article.: Khan, M; Ikram, M; Haider, A; Ul-Hamid, A; Ullah, H; Shahzadi, I; Khan, S; Kanoun, MB; Goumri-Said, S; Medina, F; Nabgan, W
    Department: Enginyeria Química
    URV's Author/s: Medina Cabello, Francisco / Nabgan, Walid
    Keywords: Graphene oxide Dft Catalysis Cao Antibacterial activity
    Abstract: This research lays the groundwork for preparing graphene oxide (GO)-doped CaO nanocomposites for efficient antibacterial potential and dye degradation. The study aimed to reduce the recombination rate of the electron hole (e−/h+) of CaO and improve charge transfer. This issue can be minimized by doping high-surface area GO into CaO quantum dots (QDs). Herein, the one-pot co-precipitation technique has prepared various concentrations (1, 3, and 5 wt%) of GO-doped CaO. Characterization techniques were used to investigate optical, elemental analysis, microstructural, functional, and morphological properties. The addition of GO into QDs showed excellent catalytic activity (CA) to control sample CaO against methylene blue (MB) in basic and acidic media compared to the neutral media. The synergistic effect of morphological alternation attributed to an increase in the mechanism of CA upon doping. Various concentrations of GO to QDs promised remarkable bactericidal potency against Escherichia coli.
    Thematic Areas: Geociências General environmental science Environmental sciences Environmental science (miscellaneous) Environmental science (all) Engenharias i Ciências biológicas ii Ciências ambientais Ciências agrárias i Biodiversidade
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    Author's mail: walid.nabgan@urv.cat francesc.medina@urv.cat
    Author identifier: 0000-0001-9901-862X 0000-0002-3111-1542
    Record's date: 2024-08-03
    Papper version: info:eu-repo/semantics/publishedVersion
    Link to the original source: https://www.frontiersin.org/articles/10.3389/fenvs.2023.1158399/full
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Papper original source: Frontiers In Environmental Science. 11
    APA: Khan, M; Ikram, M; Haider, A; Ul-Hamid, A; Ullah, H; Shahzadi, I; Khan, S; Kanoun, MB; Goumri-Said, S; Medina, F; Nabgan, W (2023). Experimental and DFT study of GO-decorated CaO quantum dots for catalytic dye degradation and bactericidal potential. Frontiers In Environmental Science, 11(), -. DOI: 10.3389/fenvs.2023.1158399
    Article's DOI: 10.3389/fenvs.2023.1158399
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2023
    Publication Type: Journal Publications
  • Keywords:

    Environmental Science (Miscellaneous),Environmental Sciences
    Graphene oxide
    Dft
    Catalysis
    Cao
    Antibacterial activity
    Geociências
    General environmental science
    Environmental sciences
    Environmental science (miscellaneous)
    Environmental science (all)
    Engenharias i
    Ciências biológicas ii
    Ciências ambientais
    Ciências agrárias i
    Biodiversidade
  • Documents:

  • Cerca a google

    Search to google scholar