Author, as appears in the article.: Wang, Qin; Abella, Laura; Yao, Yang-Rong; Yan, Yingjing; Torrens, Daniel; Meng, Qingyu; Yang, Shangfeng; Poblet, Josep M; Rodriguez-Fortea, Antonio; Chen, Ning
Department: Química Física i Inorgànica
URV's Author/s: Abella Guzman, Laura / Poblet Rius, Josep Maria / Rodríguez Fortea, Antonio / TORRENS GONZÁLEZ, DANIEL
Keywords: Bingel-hirsch addition monoadducts metallofullerenes m3n-at-c-80 m fullerene c-82 exceptional chemical-properties crystal chemistry carbene derivatives c-60
Abstract: Actinide endohedral metallofullerenes (EMFs) are a fullerene family that possess unique actinide-carbon cage host-guest molecular and electronic structures. In this work, a novel actinide EMF, U@Cs(4)-C82, was successfully synthesized and characterized, and its chemical reactivity was investigated. Crystallographic analysis shows that U@Cs(4)-C82, a new isomer of U@C82, has a Cs(4)-C82 cage, which has never been discovered in the form of empty or endohedral fullerenes. Its unique chemical reactivities were further revealed through the Bingel-Hirsch reaction and carbene addition reaction studies. The Bingel-Hirsch reaction of U@Cs(4)-C82 shows exceptionally high selectivity and product yield, yielding only one major addition adduct. Moreover, the addition sites for both reactions are unexpectedly located on adjacent carbon atoms far away from the actinide metal, despite the nucleophilic (Bingel-Hirsch) and electrophilic (carbene addition) nature of either reactant. Density functional theory (DFT) calculations suggest that this chemical behavior, unprecedented for EMFs, is directed by the unusually strong interaction between U and the sumanene motif of the carbon cage in U@Cs(4)-C82, which makes the energy increase when it is disrupted. This work reveals remarkable chemical properties of actinide EMFs originating from their unique electronic structures and highlights the key role of actinide-cage interactions in the determination of their chemical behaviors.
Thematic Areas: Química Physical and theoretical chemistry Medicina i Materiais Interdisciplinar Inorganic chemistry General medicine Farmacia Engenharias iii Engenharias ii Engenharias i Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências agrárias i Chemistry, inorganic & nuclear Chemistry (miscellaneous) Biotecnología Astronomia / física
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: daniel.torrens@urv.cat josepmaria.poblet@urv.cat antonio.rodriguezf@urv.cat
Author identifier: 0000-0002-4533-0623 0000-0001-5884-5629
Record's date: 2024-10-12
Papper version: info:eu-repo/semantics/acceptedVersion
Link to the original source: https://pubs.acs.org/doi/10.1021/acs.inorgchem.3c01764
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Papper original source: Inorganic Chemistry. 62 (32): 12976-12988
APA: Wang, Qin; Abella, Laura; Yao, Yang-Rong; Yan, Yingjing; Torrens, Daniel; Meng, Qingyu; Yang, Shangfeng; Poblet, Josep M; Rodriguez-Fortea, Antonio; C (2023). U@Cs(4)-C82: A Different Cage Isomer with Reactivity Controlled by U-Sumanene Interaction. Inorganic Chemistry, 62(32), 12976-12988. DOI: 10.1021/acs.inorgchem.3c01764
Article's DOI: 10.1021/acs.inorgchem.3c01764
Entity: Universitat Rovira i Virgili
Journal publication year: 2023
Publication Type: Journal Publications