Articles producció científica> Enginyeria Química

Compact tubular carbon-based membrane bioreactors for the anaerobic decolorization of azo dyes

  • Identification data

    Identifier: imarina:9326643
    Authors:
    Amin, MSAStüber, FGiralt, JFortuny, AFabregat, AFont, J
    Abstract:
    This research investigates a highly efficient compact tubular ceramic-supported carbon-based membrane reactor integrated with anaerobic biodegradation to decolorize the azo dyes. Two carbon-based membranes, produced using Matrimid 5218 polyimide and graphene oxide solutions, are evaluated for the comparative color removal of three structurally different azo dyes, Acid Orange 7 (AO7), Reactive Black 5 (RB5), and Direct Blue 71 (DB71). Based on FESEM microscopic images, the average pore size of the tubular ceramic-supported carbonized membrane (TCSCM) was approximately 25 nm, while for the tubular ceramic-supported graphene oxide membrane (TCSGOM), it was 12 nm. Additionally, TCSCM had a thinner layer at only 1.10 µm, while TCSGOM was slightly thicker at 2.11 µm. These features influenced the permeate flux of the membrane, in which the TCSGOM exhibited lower permeate flux (18.2 L·m−2·h−1) than the TCSCM (45.6 L·m−2·h−1). However, the anaerobic decolorization results indicated that the TCSGOM bioreactor (B-TCSGOM) was more efficient and effective at removing color from all dye solutions than the TCSCM bioreactor (B-TCSCM) over a wide range of feed concentrations. In both reactors, the highest decolorization was achieved at low feed concentration (50 mg·L−1), and removal was 94 % for AO7, 90 % for RB5, and 88 % for DB71 in B-TCSGOM, whereas 88 %, 85 %, and 69 %, respectively, in B-TCSCM. These suggest that the robust conductive nanoporous surface of B-TCSGOM makes it more effective at removing different azo dye solutions from wastewater.
  • Others:

    Author, as appears in the article.: Amin, MSA; Stüber, F; Giralt, J; Fortuny, A; Fabregat, A; Font, J
    Department: Enginyeria Química
    URV's Author/s: Font Capafons, José / Fortuny Sanromà, Agustín / Giralt Marcé, Jaume / Stüber, Frank Erich
    Keywords: Waste-water Tubular membrane Color removal Azo dyes Anaerobic process tubular membrane design color removal biodegradation azo dyes
    Abstract: This research investigates a highly efficient compact tubular ceramic-supported carbon-based membrane reactor integrated with anaerobic biodegradation to decolorize the azo dyes. Two carbon-based membranes, produced using Matrimid 5218 polyimide and graphene oxide solutions, are evaluated for the comparative color removal of three structurally different azo dyes, Acid Orange 7 (AO7), Reactive Black 5 (RB5), and Direct Blue 71 (DB71). Based on FESEM microscopic images, the average pore size of the tubular ceramic-supported carbonized membrane (TCSCM) was approximately 25 nm, while for the tubular ceramic-supported graphene oxide membrane (TCSGOM), it was 12 nm. Additionally, TCSCM had a thinner layer at only 1.10 µm, while TCSGOM was slightly thicker at 2.11 µm. These features influenced the permeate flux of the membrane, in which the TCSGOM exhibited lower permeate flux (18.2 L·m−2·h−1) than the TCSCM (45.6 L·m−2·h−1). However, the anaerobic decolorization results indicated that the TCSGOM bioreactor (B-TCSGOM) was more efficient and effective at removing color from all dye solutions than the TCSCM bioreactor (B-TCSCM) over a wide range of feed concentrations. In both reactors, the highest decolorization was achieved at low feed concentration (50 mg·L−1), and removal was 94 % for AO7, 90 % for RB5, and 88 % for DB71 in B-TCSGOM, whereas 88 %, 85 %, and 69 %, respectively, in B-TCSCM. These suggest that the robust conductive nanoporous surface of B-TCSGOM makes it more effective at removing different azo dye solutions from wastewater.
    Thematic Areas: Waste management and disposal Química Process chemistry and technology Pollution Materiais Matemática / probabilidade e estatística Interdisciplinar Farmacia Engineering, environmental Engineering, chemical Engenharias iv Engenharias iii Engenharias ii Engenharias i Ciências ambientais Ciências agrárias i Ciência de alimentos Chemical engineering (miscellaneous) Biotecnología Astronomia / física
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    Author's mail: jaume.giralt@urv.cat agustin.fortuny@urv.cat frankerich.stuber@urv.cat jose.font@urv.cat
    Author identifier: 0000-0001-5917-8741 0000-0001-9424-1400 0000-0002-4007-7905
    Record's date: 2024-08-03
    Papper version: info:eu-repo/semantics/publishedVersion
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Papper original source: Journal Of Environmental Chemical Engineering. 11 (5):
    APA: Amin, MSA; Stüber, F; Giralt, J; Fortuny, A; Fabregat, A; Font, J (2023). Compact tubular carbon-based membrane bioreactors for the anaerobic decolorization of azo dyes. Journal Of Environmental Chemical Engineering, 11(5), -. DOI: 10.1016/j.jece.2023.110633
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2023
    Publication Type: Journal Publications
  • Keywords:

    Chemical Engineering (Miscellaneous),Engineering, Chemical,Engineering, Environmental,Pollution,Process Chemistry and Technology,Waste Management and Disposal
    Waste-water
    Tubular membrane
    Color removal
    Azo dyes
    Anaerobic process
    tubular membrane
    design
    color removal
    biodegradation
    azo dyes
    Waste management and disposal
    Química
    Process chemistry and technology
    Pollution
    Materiais
    Matemática / probabilidade e estatística
    Interdisciplinar
    Farmacia
    Engineering, environmental
    Engineering, chemical
    Engenharias iv
    Engenharias iii
    Engenharias ii
    Engenharias i
    Ciências ambientais
    Ciências agrárias i
    Ciência de alimentos
    Chemical engineering (miscellaneous)
    Biotecnología
    Astronomia / física
  • Documents:

  • Cerca a google

    Search to google scholar