Articles producció científica> Química Física i Inorgànica

Local Environments Created by the Ligand Coating of Nanoparticles and Their Implications for Sensing and Surface Reactions

  • Identification data

    Identifier: imarina:9327732
    Authors:
    Schulz, FHuhn, JWerner, MHuhn, DKvelstad, JKoert, UWutke, NKlapper, MFroba, MBaulin, VParak, WJ
    Abstract:
    ConspectusThe ligand shells of colloidal nanoparticles (NPs) can serve different purposes. In general, they provide colloidal stability by introducing steric repulsion between NPs. In the context of biological applications, the ligand shell plays a critical role in targeting, enabling NPs to achieve specific biodistributions. However, there is also another important feature of the ligand shell of NPs, namely, the creation of a local environment differing from the bulk of the solvent in which the NPs are dispersed. It is known that charged ligand shells can attract or repel ions and change the effective charge of a NP through Debye-Hückel screening. Positively charged ions, such as H+ (or H3O+) are attracted to negatively charged surfaces, whereas negatively charged ions, such as Cl- are repelled. The distribution of the ions around charged NP surfaces is a radial function of distance from the center of the NP, which is governed by a balance of electrostatic forces and entropy of ions and ligands. As a result, the ion concentration at the NP surface is different from its bulk equilibrium concentration, i.e., the charged ligand shell around the NPs has formed a distinct local environment. This not only applies to charged ligand shells but also follows a more general principle of induced condensation and depletion. Polar/apolar ligand shells, for example, result in a locally increased concentration of polar/apolar molecules. Similar effects can be seen for biocatalysts like enzymes immobilized in nanoporous host structures, which provide a special environment due to their surface chemistry and geometrical nanoconfinement. The formation of a local environment close to the ligand shell of NPs has profound implications for NP sensing applications. As a result, analyte concent
  • Others:

    Author, as appears in the article.: Schulz, F; Huhn, J; Werner, M; Huhn, D; Kvelstad, J; Koert, U; Wutke, N; Klapper, M; Froba, M; Baulin, V; Parak, WJ
    Department: Química Física i Inorgànica
    URV's Author/s: Baulin, Vladimir
    Keywords: Colloidal nanoparticles size silica sensors protein corona porous materials ion gold charge adsorption
    Abstract: ConspectusThe ligand shells of colloidal nanoparticles (NPs) can serve different purposes. In general, they provide colloidal stability by introducing steric repulsion between NPs. In the context of biological applications, the ligand shell plays a critical role in targeting, enabling NPs to achieve specific biodistributions. However, there is also another important feature of the ligand shell of NPs, namely, the creation of a local environment differing from the bulk of the solvent in which the NPs are dispersed. It is known that charged ligand shells can attract or repel ions and change the effective charge of a NP through Debye-Hückel screening. Positively charged ions, such as H+ (or H3O+) are attracted to negatively charged surfaces, whereas negatively charged ions, such as Cl- are repelled. The distribution of the ions around charged NP surfaces is a radial function of distance from the center of the NP, which is governed by a balance of electrostatic forces and entropy of ions and ligands. As a result, the ion concentration at the NP surface is different from its bulk equilibrium concentration, i.e., the charged ligand shell around the NPs has formed a distinct local environment. This not only applies to charged ligand shells but also follows a more general principle of induced condensation and depletion. Polar/apolar ligand shells, for example, result in a locally increased concentration of polar/apolar molecules. Similar effects can be seen for biocatalysts like enzymes immobilized in nanoporous host structures, which provide a special environment due to their surface chemistry and geometrical nanoconfinement. The formation of a local environment close to the ligand shell of NPs has profound implications for NP sensing applications. As a result, analyte concentrations close to the ligand shell, which are the ones that are measured, may be very different from the analyte concentrations in bulk. Based on previous work describing this effect, it will be discussed herein how such local environments, created by the choice of used ligands, may allow for tailoring the NPs' sensing properties. In general, the ligand shell around NPs can be attractive/repulsive for molecules with distinct properties and thus forms an environment that can modulate the specific response. Such local environments can also be optimized to modulate chemical reactions close to the NP surface (for example, by size filtering within pores) or to attract specific low abundance proteins. The importance hereby is that this is based on interaction with low selectivity between the ligands and the target molecules.
    Thematic Areas: Química Medicine (miscellaneous) Interdisciplinar General medicine General chemistry Farmacia Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Chemistry, multidisciplinary Chemistry (miscellaneous) Chemistry (all) Chemistry Astronomia / física
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    Author's mail: vladimir.baulin@urv.cat
    Author identifier: 0000-0003-2086-4271
    Record's date: 2024-08-03
    Papper version: info:eu-repo/semantics/publishedVersion
    Link to the original source: https://pubs.acs.org/doi/10.1021/acs.accounts.3c00139
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Papper original source: Accounts Of Chemical Research. 56 (17): 2278-2285
    APA: Schulz, F; Huhn, J; Werner, M; Huhn, D; Kvelstad, J; Koert, U; Wutke, N; Klapper, M; Froba, M; Baulin, V; Parak, WJ (2023). Local Environments Created by the Ligand Coating of Nanoparticles and Their Implications for Sensing and Surface Reactions. Accounts Of Chemical Research, 56(17), 2278-2285. DOI: 10.1021/acs.accounts.3c00139
    Article's DOI: 10.1021/acs.accounts.3c00139
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2023
    Publication Type: Journal Publications
  • Keywords:

    Chemistry,Chemistry (Miscellaneous),Chemistry, Multidisciplinary,Medicine (Miscellaneous)
    Colloidal nanoparticles
    size
    silica
    sensors
    protein corona
    porous materials
    ion
    gold
    charge
    adsorption
    Química
    Medicine (miscellaneous)
    Interdisciplinar
    General medicine
    General chemistry
    Farmacia
    Ciências biológicas iii
    Ciências biológicas ii
    Ciências biológicas i
    Ciências ambientais
    Chemistry, multidisciplinary
    Chemistry (miscellaneous)
    Chemistry (all)
    Chemistry
    Astronomia / física
  • Documents:

  • Cerca a google

    Search to google scholar