Author, as appears in the article.: Aziz, T; Imran, M; Haider, A; Shahzadi, A; Ul Abidin, MZ; Ul-Hamid, A; Nabgan, W; Algaradah, MM; Fouda, AM; Ikram, M
Department: Enginyeria Química
URV's Author/s: Nabgan, Walid
Keywords: Resistance Removal Reduction Photoluminescence Nanotubes Nanoparticles Fabrication Electrodes Efficient Dye degradation
Abstract: In this research, a fixed concentration (3 wt%) of Ag/PAA and PAA/Ag doped graphene quantum dots (GQDs) were synthesized using the co-precipitation technique. A variety of characterization techniques were employed to synthesize samples to investigate their optical, morphological, structural, and compositional analyses, antimicrobial efficacy, and dye degradation potential with molecular docking analysis. GQDs have high solubility, narrow band gaps, and are suitable for electron acceptors and donors but show less adsorption and catalytic behavior. Incorporating polyacrylic acid (PAA) into GQDs increases the catalytic and antibacterial activities due to the carboxylic group (-COOH). Furthermore, introducing silver (Ag) increased the degradation of dye and microbes as it had a high surface-to-volume ratio. In addition, molecular docking studies were used to decipher the mechanism underlying the bactericidal action of silver and polyacrylic acid-doped graphene quantum dots and revealed inhibition of & beta;-lactamase and DNA gyrase.In this research, a fixed concentration (3 wt%) of Ag/PAA and PAA/Ag doped graphene quantum dots (GQDs) were synthesized using the co-precipitation technique.
Thematic Areas: Zootecnia / recursos pesqueiros Saúde coletiva Química Odontología Medicina veterinaria Medicina iii Medicina ii Medicina i Materiais Interdisciplinar Geociências General chemistry General chemical engineering Farmacia Ensino Engenharias iv Engenharias iii Engenharias ii Engenharias i Economia Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Ciência da computação Chemistry, multidisciplinary Chemistry (miscellaneous) Chemistry (all) Chemical engineering (miscellaneous) Chemical engineering (all) Biotecnología Biodiversidade Astronomia / física
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: walid.nabgan@urv.cat
Author identifier: 0000-0001-9901-862X
Record's date: 2024-08-03
Papper version: info:eu-repo/semantics/publishedVersion
Link to the original source: https://pubs.rsc.org/en/content/articlelanding/2023/ra/d3ra04741e
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Papper original source: Rsc Advances. 13 (40): 28008-28020
APA: Aziz, T; Imran, M; Haider, A; Shahzadi, A; Ul Abidin, MZ; Ul-Hamid, A; Nabgan, W; Algaradah, MM; Fouda, AM; Ikram, M (2023). Catalytic performance and antibacterial behaviour with molecular docking analysis of silver and polyacrylic acid doped graphene quantum dots. Rsc Advances, 13(40), 28008-28020. DOI: 10.1039/d3ra04741e
Article's DOI: 10.1039/d3ra04741e
Entity: Universitat Rovira i Virgili
Journal publication year: 2023
Publication Type: Journal Publications