Author, as appears in the article.: Siddique, MA; Imran, M; Haider, A; Shahzadi, A; Ul-Hamid, A; Nabgan, W; Batool, M; Khan, K; Ikram, M; Somaily, HH; Mahmood, A
Department: Enginyeria Química
URV's Author/s: Nabgan, Walid
Keywords: Tio2 nanoparticles Photocatalytic degradation Molecular docking Mgo Methyl-orange Magnesium-oxide Gqds Extract Co-precipitation Active species
Abstract: Designing efficient catalysts that possess large number of active sites, high catalytic activity and selectivity while also exhibiting strong antimicrobial activity is a challenging task because of poor control over material fabrication. Therefore, developing new and innovative approaches for the synthesis of catalytic materials is crucial for addressing these challenges. Here, we report the controlled fabrication of GQDs/Y-doped MgO nanoparticles achieved by co doping of yttrium (Y) and graphene quantum dots (GQDs) in magnesium oxide (MgO) based nanostructures (NSs) using the co-precipitation method. The co-doping of GQDs and Y was controlled by manipulating the ratio of precursors where introduction of GQD resulted in higher surface area and enhanced conductivity while the doping of Y enhanced the number of active sites in the final product. The GQDs/Y-doped MgO exhibited an average particle size of similar to 50 nm and a bandgap of 3.6 eV. Owing to these excellent characteristics, the GQDs/Y-doped MgO was utilized as a catalyst for treatment of the organic pollutants from water as well as antibacterial activity. The modified GQDs/Y-doped MgO nanostructure exhibited excellent activity of over 99.9 % for dye removal and versatility in a broad range of pH which clearly indicated the application in a range of different environments. Furthermore, the GQDs/Y-doped MgO exhibited excellent antibacterial activity against Escherichia Coli (E. Coli) bacteria. To gain further insights into the origins of this excellent activity response, the molecular docking simulations (MDS) is utilized against DNA gyrase and FabI (two enzymes critical to nucleic acid and fatty acid biosynthesis, respectively), to uncover the mechanism behind the observed antibacterial effects. In summary, the modified catalyst provides a pathway to design highly efficient catalysts for all pH range water treatment as well as good activity against microbes.
Thematic Areas: Renewable energy, sustainability and the environment Materials science, multidisciplinary Materials science (miscellaneous) Materials science (all) Green & sustainable science & technology General materials science General chemistry Chemistry (miscellaneous) Chemistry (all)
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: walid.nabgan@urv.cat
Author identifier: 0000-0001-9901-862X
Record's date: 2024-08-03
Papper version: info:eu-repo/semantics/publishedVersion
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Papper original source: Materials Today Sustainability. 25 100690-
APA: Siddique, MA; Imran, M; Haider, A; Shahzadi, A; Ul-Hamid, A; Nabgan, W; Batool, M; Khan, K; Ikram, M; Somaily, HH; Mahmood, A (2024). Enhancing catalytic and antibacterial activity with size-controlled yttrium and graphene quantum dots doped MgO nanostructures: A molecular docking analysis. Materials Today Sustainability, 25(), 100690-. DOI: 10.1016/j.mtsust.2024.100690
Entity: Universitat Rovira i Virgili
Journal publication year: 2024
Publication Type: Journal Publications