Author, as appears in the article.: Bernal, Mary Carlota; Batista, Edgar; Martinez-Balleste, Antoni; Solanas, Agusti
Department: Enginyeria Informàtica i Matemàtiques
URV's Author/s: Batista De Frutos, Edgar / Bernal Jimenez, Mary / BERNAL SOLANO, MARIA DOLORES / Martínez Ballesté, Antoni / Solanas Gómez, Agustín
Keywords: Age-related-changes Ageing Ageing datasets Artificial intelligence Biomarker Brain age Early-diagnosis Elderly Functional connectivity Health Machine learning Machine learning approach Older adult Older adults Older-adults Structural networks
Abstract: As society experiences accelerated ageing, understanding the complex biological processes of human ageing, which are affected by a large number of variables and factors, becomes increasingly crucial. Artificial intelligence (AI) presents a promising avenue for ageing research, offering the ability to detect patterns, make accurate predictions, and extract valuable insights from large volumes of complex, heterogeneous data. As ageing research increasingly leverages AI techniques, we present a timely systematic literature review to explore the current state-of-the-art in this field following a rigorous and transparent review methodology. As a result, a total of 77 articles have been identified, summarised, and categorised based on their characteristics. AI techniques, such as machine learning and deep learning, have been extensively used to analyse diverse datasets, comprising imaging, genetic, behavioural, and contextual data. Findings showcase the potential of AI in predicting age-related outcomes, developing ageing biomarkers, and determining factors associated with healthy ageing. However, challenges related to data quality, interpretability of AI models, and privacy and ethical considerations have also been identified. Despite the advancements, novel approaches suggest that there is still room for improvement to provide personalised AI-driven healthcare services and promote active ageing initiatives with the ultimate goal of enhancing the quality of life and well-being of older adults.Graphical abstractOverview of the literature review.
Thematic Areas: Administração, ciências contábeis e turismo Artificial intelligence Biotecnología Ciência da computação Ciências agrárias i Ciências ambientais Computer science, artificial intelligence Engenharias iii Engenharias iv Interdisciplinar Matemática / probabilidade e estatística
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: antoni.martinez@urv.cat agusti.solanas@urv.cat edgar.batista@urv.cat edgar.batista@urv.cat mary.bernal@estudiants.urv.cat
Author identifier: 0000-0002-1787-7410 0000-0002-4881-6215 0000-0001-7565-2909
Record's date: 2024-10-26
Papper version: info:eu-repo/semantics/publishedVersion
Link to the original source: https://link.springer.com/article/10.1007/s10489-024-05817-z
Papper original source: Applied Intelligence. 54 (22): 11949-11977
APA: Bernal, Mary Carlota; Batista, Edgar; Martinez-Balleste, Antoni; Solanas, Agusti (2024). Artificial intelligence for the study of human ageing: a systematic literature review. Applied Intelligence, 54(22), 11949-11977. DOI: 10.1007/s10489-024-05817-z
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Article's DOI: 10.1007/s10489-024-05817-z
Entity: Universitat Rovira i Virgili
Journal publication year: 2024
Publication Type: Journal Publications