Author, as appears in the article.: Malik, Shuja Bashir; Annanouch, Fatima Ezahra; D'Souza, Ransell; Bittencourt, Carla; Todorovic, Milica; Llobet, Eduard
Department: Enginyeria Electrònica, Elèctrica i Automàtica
URV's Author/s: Annanouch, Fatima Ezahra / Llobet Valero, Eduard / Malik, Shuja Bashir
Keywords: Wse2 Ws2 Ws 2 Wo Transition-metal dichalcogenides Tmds Sulfurization Quality monolayer ws2 Performance Nh3 Nh 3 Growth Gas sensor Films Dft Df Apcvd Ammonia 2d materials
Abstract: Nanostructured transition metal dichalcogenides have garnered significant research interest for physical and chemical sensing applications due to their unique crystal structure and large effective surface area. However, the high-yield synthesis of these materials on different substrates and in nanostructured films remains a challenge that hinders their real-world applications. In this work, we demonstrate the synthesis of two-dimensional (2D) tungsten disulfide (WS2) sheets on a hundred-milligram scale by sulfurization of tungsten trioxide (WO3) powder in an atmospheric pressure chemical vapor deposition reactor. The as-synthesized WS2 powders can be formulated into inks and deposited on a broad range of substrates using techniques like screen or inkjet printing, spin-coating, drop-casting, or airbrushing. Structural, morphological, and chemical composition analysis confirm the successful synthesis of edge-enriched WS2 sheets. The sensing performance of the WS2 films prepared with the synthesized 2D material was evaluated for ammonia (NH3) detection at different operating temperatures. The results reveal exceptional gas sensing responses, with the sensors showing a 100% response toward 5 ppm of NH3 at 150 degrees C. The sensor detection limit was experimentally verified to be below 1 ppm of NH3 at 150 degrees C. Selectivity tests demonstrated the high selectivity of the edge-enriched WS2 films toward NH3 in the presence of interfering gases like CO, benzene, H-2, and NO2. Furthermore, the sensors displayed remarkable stability against high levels of humidity, with only a slight decrease in response from 100% in dry air to 93% in humid environments. Density functional theory and Bayesian optimization simulations were performed, and the theoretical results agree with the experimental findings, revealing that the interaction between gas molecules and WS2 is primarily based on physisorption.
Thematic Areas: Química Nanoscience and nanotechnology Nanoscience & nanotechnology Medicine (miscellaneous) Medicina veterinaria Medicina ii Medicina i Materials science, multidisciplinary Materials science (miscellaneous) Materials science (all) Materiais Interdisciplinar General materials science Farmacia Engenharias iv Engenharias iii Engenharias ii Economia Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Biotecnología Biodiversidade Astronomia / física Arquitetura, urbanismo e design
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: fatimaezahra.annanouch@urv.cat shujabashir.malik@urv.cat eduard.llobet@urv.cat
Author identifier: 0000-0003-1533-6482 0000-0001-6164-4342
Record's date: 2024-10-12
Papper version: info:eu-repo/semantics/publishedVersion
Link to the original source: https://pubs.acs.org/doi/10.1021/acsami.4c10077
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Papper original source: Acs Applied Materials & Interfaces. 16 (36): 48585-48597
APA: Malik, Shuja Bashir; Annanouch, Fatima Ezahra; D'Souza, Ransell; Bittencourt, Carla; Todorovic, Milica; Llobet, Eduard (2024). High-Yield WS2 Synthesis through Sulfurization in Custom-Modified Atmospheric Pressure Chemical Vapor Deposition Reactor, Paving the Way for Selective NH3 Vapor Detection. Acs Applied Materials & Interfaces, 16(36), 48585-48597. DOI: 10.1021/acsami.4c10077
Article's DOI: 10.1021/acsami.4c10077
Entity: Universitat Rovira i Virgili
Journal publication year: 2024
Publication Type: Journal Publications