Author, as appears in the article.: Okran, Ammar M; Abdel-Nasser, Mohamed; Rashwan, Hatem A; Puig, Domenec
Department: Enginyeria Informàtica i Matemàtiques
URV's Author/s: Abdellatif Fatahallah Ibrahim Mahmoud, Hatem / Abdelnasser Mohamed Mahmoud, Mohamed / Puig Valls, Domènec Savi
Keywords: Deep learning Instance segmentatio Instance segmentation Mask-rcnn Object detection Road crack
Abstract: Most crack image datasets are developed for crack segmentation or detection. They cannot be used to train a deep learning model to detect and segment cracks simultaneously. Most of existing datasets do not include a very accurate annotation. Besides, some crack images cannot be used to train deep learning models because of their inferior quality. In this paper, we propose a promising curated crack image dataset that allows the development of crack segmentation, detection, and classification on the same set of images simultaneously. There is no dataset for road crack that involves detection and segmentation tasks to the best of our knowledge. The current version of the curated database consists of 506 images derived from the RDD2020 dataset taken from multi-countries (Japan, Czech, and India). We use the curated dataset to build different deep learning-based crack detection and segmentation methods. Our experiments demonstrate that the proposed dataset yields promising results for crack detection and segmentation.
Thematic Areas: Artificial intelligence Ciências agrárias i Comunicació i informació Engenharias iii Engenharias iv General o multidisciplinar Información y documentación Interdisciplinar Medicina ii
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: domenec.puig@urv.cat hatem.abdellatif@urv.cat mohamed.abdelnasser@urv.cat
Author identifier: 0000-0002-0562-4205 0000-0001-5421-1637 0000-0002-1074-2441
Record's date: 2024-09-21
Papper version: info:eu-repo/semantics/publishedVersion
Link to the original source: https://ebooks.iospress.nl/doi/10.3233/FAIA220342
Papper original source: Frontiers In Artificial Intelligence And Applications. 356 225-228
APA: Okran, Ammar M; Abdel-Nasser, Mohamed; Rashwan, Hatem A; Puig, Domenec (2022). A Curated Dataset for Crack Image Analysis: Experimental Verification and Future Perspectives. Amsterdam: IOS Press
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Article's DOI: 10.3233/FAIA220342
Entity: Universitat Rovira i Virgili
Journal publication year: 2022
Publication Type: Proceedings Paper