Articles producció científica> Química Analítica i Química Orgànica

Valorization of Lactate Esters and Amides into Value-Added Biobased (Meth)acrylic Polymers

  • Identification data

    Identifier: imarina:9380943
    Authors:
    Palà MLligadas GMoreno A
    Abstract:
    (Meth)acrylic polymers are massively produced due to their inherently attractive properties. However, the vast majority of these polymers are derived from fossil resources, which is not aligned with the tendency to reduce gas emissions. In this context, (meth)acrylic polymers derived from biomass (biobased polymers) are gaining momentum, as their application in different areas can not only stand the comparison but even surpass, in some cases, the performance of petroleum-derived ones. In this review, we highlight the design and synthesis of (meth)acrylic polymers derived from lactate esters (LEs) and lactate amides (LAs), both derived from lactic acid. While biobased polymers have been widely studied and reviewed, the poly(meth)acrylates with pendant LE and LA moieties evolved slowly until recently when significant achievements have been made. Hence, constraints and opportunities arising from previous research in this area are presented, focusing on the synthesis of well-defined polymers for the preparation of advanced materials.
  • Others:

    Author, as appears in the article.: Palà M; Lligadas G; Moreno A
    Department: Química Analítica i Química Orgànica
    URV's Author/s: Lligadas Puig, Gerard / Moreno Guerra, Adrian / Moreno Ribas, Antonio / PALÀ SÁNCHEZ, MARC
    Keywords: Ethyl lactate Green solvent Lactic-acid Ligni Lignocellulosic biomass Living radical polymerization Mechanical-properties Platform Raft polymerization Tunable lcst
    Abstract: (Meth)acrylic polymers are massively produced due to their inherently attractive properties. However, the vast majority of these polymers are derived from fossil resources, which is not aligned with the tendency to reduce gas emissions. In this context, (meth)acrylic polymers derived from biomass (biobased polymers) are gaining momentum, as their application in different areas can not only stand the comparison but even surpass, in some cases, the performance of petroleum-derived ones. In this review, we highlight the design and synthesis of (meth)acrylic polymers derived from lactate esters (LEs) and lactate amides (LAs), both derived from lactic acid. While biobased polymers have been widely studied and reviewed, the poly(meth)acrylates with pendant LE and LA moieties evolved slowly until recently when significant achievements have been made. Hence, constraints and opportunities arising from previous research in this area are presented, focusing on the synthesis of well-defined polymers for the preparation of advanced materials.
    Thematic Areas: Astronomia / física Biochemistry & molecular biology Bioengineering Biomaterials Biotecnología Chemistry, organic Ciência de alimentos Ciências agrárias i Ciências biológicas i Ciências biológicas ii Ciências biológicas iii Engenharias ii Engenharias iv Farmacia Interdisciplinar Materiais Materials chemistry Medicina ii Polymer science Polymers and plastics Química
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    Author's mail: gerard.lligadas@urv.cat antonio.moreno@urv.cat marc.pala@urv.cat adrian.moreno@urv.cat marc.pala@urv.cat
    Author identifier: 0000-0002-8519-1840 0000-0003-3945-2314
    Record's date: 2024-10-26
    Papper version: info:eu-repo/semantics/publishedVersion
    Link to the original source: https://pubs.acs.org/doi/10.1021/acs.biomac.4c00891
    Papper original source: Biomacromolecules. 25 (10): 6338-6356
    APA: Palà M; Lligadas G; Moreno A (2024). Valorization of Lactate Esters and Amides into Value-Added Biobased (Meth)acrylic Polymers. Biomacromolecules, 25(10), 6338-6356. DOI: 10.1021/acs.biomac.4c00891
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Article's DOI: 10.1021/acs.biomac.4c00891
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2024
    Publication Type: Journal Publications
  • Keywords:

    Biochemistry & Molecular Biology,Bioengineering,Biomaterials,Chemistry, Organic,Materials Chemistry,Polymer Science,Polymers and Plastics
    Ethyl lactate
    Green solvent
    Lactic-acid
    Ligni
    Lignocellulosic biomass
    Living radical polymerization
    Mechanical-properties
    Platform
    Raft polymerization
    Tunable lcst
    Astronomia / física
    Biochemistry & molecular biology
    Bioengineering
    Biomaterials
    Biotecnología
    Chemistry, organic
    Ciência de alimentos
    Ciências agrárias i
    Ciências biológicas i
    Ciências biológicas ii
    Ciências biológicas iii
    Engenharias ii
    Engenharias iv
    Farmacia
    Interdisciplinar
    Materiais
    Materials chemistry
    Medicina ii
    Polymer science
    Polymers and plastics
    Química
  • Documents:

  • Cerca a google

    Search to google scholar