Author, as appears in the article.: Hassanien, Mohamed A; Singh, Vivek Kumar; Puig, Domenec; Abdel-Nasser, Mohamed
Department: Enginyeria Informàtica i Matemàtiques
URV's Author/s: Abdelnasser Mohamed Mahmoud, Mohamed / Puig Valls, Domènec Savi
Keywords: Breast cancer Cad systems Radiomics Ultrasound imaging Vision transformer Vision transformers
Abstract: Breast cancer must be detected early to reduce the mortality rate. Ultrasound images can make it easier for the clinician to diagnose cases of dense breasts. This study presents a deep vision transformer-based approach for predicting breast cancer malignancy scores from ultrasound images. In particular, various state-of-the-art deep vision transformers such as BEiT, CaiT, Swin, XCiT, and VisFormer are adapted and trained to extract robust radiomics to classify breast tumors in ultrasound images as benign or malignant. The best-performing model is used to predict the malignancy score of each input ultrasound image. Experimental results revealed that the proposed approach achieves promising results for the detection of malignant tumors of the breast on ultrasound images.
Thematic Areas: Artificial intelligence Ciências agrárias i Comunicació i informació Engenharias iii Engenharias iv General o multidisciplinar Información y documentación Interdisciplinar Medicina ii
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: domenec.puig@urv.cat mohamed.abdelnasser@urv.cat
Author identifier: 0000-0002-0562-4205 0000-0002-1074-2441
Record's date: 2024-10-12
Papper version: info:eu-repo/semantics/publishedVersion
Papper original source: Frontiers In Artificial Intelligence And Applications. 356 298-307
APA: Hassanien, Mohamed A; Singh, Vivek Kumar; Puig, Domenec; Abdel-Nasser, Mohamed (2022). Transformer-Based Radiomics for Predicting Breast Tumor Malignancy Score in Ultrasonography. Amsterdam: IOS Press
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Entity: Universitat Rovira i Virgili
Journal publication year: 2022
Publication Type: Proceedings Paper