Author, as appears in the article.: Ahmed, Basma; Omer, Osama A; Rashed, Amal; Puig, Domenec; Abdel-Nasser, Mohamed
Department: Enginyeria Informàtica i Matemàtiques
URV's Author/s: Abdelnasser Mohamed Mahmoud, Mohamed / Puig Valls, Domènec Savi
Keywords: Blind image quality Deep learnin Deep learning Pseudo-reference Similarity measures
Abstract: Image quality assessment (IQA) algorithms are critical for determining the quality of high-resolution photographs. This work proposes a hybrid NR IQA approach that uses deep transfer learning to enhance classic NR IQA with deep learning characteristics. Firstly, we simulate a pseudo reference image (PRI) from the input image. Then, we used a pre-trained inception-v3 deep feature extractor to generate the feature maps from the input distorted image and PRI. The distance between the feature maps of the input distorted image and PRI are measured using the local structural similarity (LSS) method. A nonlinear mapping function is used to calculate the final quality scores. When compared to previous work, the proposed method has a promising performance.
Thematic Areas: Artificial intelligence Ciências agrárias i Comunicació i informació Engenharias iii Engenharias iv General o multidisciplinar Información y documentación Interdisciplinar Medicina ii
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: domenec.puig@urv.cat mohamed.abdelnasser@urv.cat
Author identifier: 0000-0002-0562-4205 0000-0002-1074-2441
Record's date: 2024-10-12
Papper version: info:eu-repo/semantics/publishedVersion
Link to the original source: https://ebooks.iospress.nl/doi/10.3233/FAIA220345
Papper original source: Frontiers In Artificial Intelligence And Applications. 356 243-248
APA: Ahmed, Basma; Omer, Osama A; Rashed, Amal; Puig, Domenec; Abdel-Nasser, Mohamed (2022). Referenceless Image Quality Assessment Utilizing Deep Transfer-Learned Features. Amsterdam: IOS Press
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Article's DOI: 10.3233/FAIA220345
Entity: Universitat Rovira i Virgili
Journal publication year: 2022
Publication Type: Proceedings Paper