Articles producció científica> Enginyeria Informàtica i Matemàtiques

Breast Tumor Classification in Digital Tomosynthesis Based on Deep Learning Radiomics

  • Identification data

    Identifier: imarina:9385564
    Authors:
    Hassan, LoayAbdel-Nasser, MohamedSaleh, AdelPuig, Domenec
    Abstract:
    Breast cancer is the most frequently diagnosed cancer in women globally. Early and accurate detection and classification of breast tumors are critical in improving treatment strategies and increasing the patient survival rate. Digital breast tomosynthesis (DBT) is an advanced form of mammography that aids better in the early detection and diagnosis of breast disease. This paper proposes a breast tumor classification method based on analyzing and evaluating the performance of various of the most innovative deep learning classification models in cooperation with a support vector machine (SVM) classifier for a DBT dataset. Specifically, we study the ability to use transfer learning from non-medical images to classify tumors in unseen DBT medical images. In addition, we utilize the fine-tuning technique to improve classification accuracy.
  • Others:

    Author, as appears in the article.: Hassan, Loay; Abdel-Nasser, Mohamed; Saleh, Adel; Puig, Domenec
    Department: Enginyeria Informàtica i Matemàtiques
    URV's Author/s: Abdelnasser Mohamed Mahmoud, Mohamed / Puig Valls, Domènec Savi
    Keywords: Breast cancer classification Brest cancer classification Computer vision Deep learning Digital breast tomosynthesis Support vector machin Support vector machine
    Abstract: Breast cancer is the most frequently diagnosed cancer in women globally. Early and accurate detection and classification of breast tumors are critical in improving treatment strategies and increasing the patient survival rate. Digital breast tomosynthesis (DBT) is an advanced form of mammography that aids better in the early detection and diagnosis of breast disease. This paper proposes a breast tumor classification method based on analyzing and evaluating the performance of various of the most innovative deep learning classification models in cooperation with a support vector machine (SVM) classifier for a DBT dataset. Specifically, we study the ability to use transfer learning from non-medical images to classify tumors in unseen DBT medical images. In addition, we utilize the fine-tuning technique to improve classification accuracy.
    Thematic Areas: Artificial intelligence Ciências agrárias i Comunicació i informació Engenharias iii Engenharias iv General o multidisciplinar Información y documentación Interdisciplinar Medicina ii
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    Author's mail: domenec.puig@urv.cat mohamed.abdelnasser@urv.cat
    Author identifier: 0000-0002-0562-4205 0000-0002-1074-2441
    Record's date: 2024-10-12
    Papper version: info:eu-repo/semantics/publishedVersion
    Link to the original source: https://ebooks.iospress.nl/doi/10.3233/FAIA220348
    Papper original source: Frontiers In Artificial Intelligence And Applications. 356 269-278
    APA: Hassan, Loay; Abdel-Nasser, Mohamed; Saleh, Adel; Puig, Domenec (2022). Breast Tumor Classification in Digital Tomosynthesis Based on Deep Learning Radiomics. Amsterdam: IOS Press
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Article's DOI: 10.3233/FAIA220348
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2022
    Publication Type: Proceedings Paper
  • Keywords:

    Artificial Intelligence
    Breast cancer classification
    Brest cancer classification
    Computer vision
    Deep learning
    Digital breast tomosynthesis
    Support vector machin
    Support vector machine
    Artificial intelligence
    Ciências agrárias i
    Comunicació i informació
    Engenharias iii
    Engenharias iv
    General o multidisciplinar
    Información y documentación
    Interdisciplinar
    Medicina ii
  • Documents:

  • Cerca a google

    Search to google scholar