Author, as appears in the article.: Becerril-Castro, I Brian; Turino, Mariacristina; Pazos-Perez, Nicolas; Xiaofei, Xiao; Levato, Tadzio; Maier, Stefan A; Alvarez-Puebla, Ramon A; Giannini, Vincenzo
Department: Química Física i Inorgànica
URV's Author/s: Alvarez Puebla, Ramon Angel / Pazos Pérez, Nicolás Carlos / Turino, Mariacristina
Keywords: Grin lens Hierarchical plasmonic nanostructures Nanolense Nanolenses
Abstract: Gradient-index (GRIN) lenses have long been recognized for their importance in optics as a result of their ability to manipulate light. However, traditional GRIN lenses are limited on a scale of tens of microns, impeding their integration into nanoscale optical devices. This study presents a groundbreaking self-assembled method that overcomes this limitation, allowing for constructing GRIN lenses at an extremely small dimension. The self-assembly process offers several advantages, including creating highly precise, scalable, cost-effective, and complex structures that eliminate the need for intricate and time-consuming manual assembly. By engineering densely packed arrays of metallic nanoparticles, exceptional control over the local refractive index has been achieved. This is accomplished by layer-by-layer assembly of gold nanoparticles of different sizes over silica beads. A GRIN lens light-sink is built where light is preferentially directed toward the center, which is corroborated by measuring the fluorescence of Rhodamine B (RhB) in the inside. Unlike traditional bulky macroscopic GRIN lenses, light-sinks boast a size under 2.5 mu m. Notably, the self-focusing effects of this design allowed us to track the growth of single-nanoparticle layers using SERS (Surface-Enhanced Raman Spectroscopy). These results pave the way for designing and developing lens-like devices at the nanoscale, allowing unprecedented light manipulation. By engineering densely packed arrays of metallic nanoparticles, a GRIN lens light-sink is built where light is preferentially directed toward the center. Unlike traditional bulky macroscopic GRIN lenses, this light-sink features a size under 2.5 mu m, with exceptional control over the local refractive index. image
Thematic Areas: Atomic and molecular physics, and optics Electronic, optical and magnetic materials Materials science, multidisciplinary Optics
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: nicolas.pazos@urv.cat mariacristina.turino@estudiants.urv.cat ramon.alvarez@urv.cat
Author identifier: 0000-0002-2326-4231 0000-0003-3053-4970 0000-0003-4770-5756
Record's date: 2024-11-02
Papper version: info:eu-repo/semantics/publishedVersion
Papper original source: Advanced Optical Materials. 12 (20):
APA: Becerril-Castro, I Brian; Turino, Mariacristina; Pazos-Perez, Nicolas; Xiaofei, Xiao; Levato, Tadzio; Maier, Stefan A; Alvarez-Puebla, Ramon A; Gianni (2024). Wet Chemical Engineering of Nanostructured GRIN Lenses. Advanced Optical Materials, 12(20), -. DOI: 10.1002/adom.202400485
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Entity: Universitat Rovira i Virgili
Journal publication year: 2024
Publication Type: Journal Publications