Articles producció científica> Enginyeria Electrònica, Elèctrica i Automàtica

IoT Platform Enhanced With Neural Network for Air Pollutant Monitoring

  • Identification data

    Identifier: imarina:9391477
    Authors:
    Santos-Betancourt, AlejandroCarlos Santos-Ceballos, JoseSalehnia, FoadAyoub Alouani, MohamedRomero, AlfonsoLuis Ramirez, JoseVilanova, Xavier
    Abstract:
    This work presents the design and setup of an IoT platform at level four of the technology readiness level (TRL-4) to detect, classify, and quantify pollutant gases. This study combines concepts such as wireless sensor networks (WSNs), arrays of sensors, and multivariate data analysis to interface different nanostructured chemiresistor gas sensors. The IoT platform consists of several gas sensor nodes (GSNs) with Wi-Fi capability to send data from a sensor array to a server and its user interface (UI). Each GSN interfaces one sensor array (up to four chemiresistor gas sensors and one temperature and humidity sensor). The server channels the data from the GSNs to the UI. The platform was set up following a two-stage methodology. First (training stage), sensor data were received, stored, and used to train different multilayer perceptrons (MLPs) artificial neural networks (ANNs). Second (recognition stage), models were implemented in the UI to classify and quantify the presence of pollutants. The platform was tested in laboratory conditions under exposure to nitrogen dioxide and ammonia at a different %RH. As a result, the platform improves the classification and quantification times compared with the single-sensor approach. In addition, the system was evaluated using a gas mixture of both gases, showing a classification accuracy exceeding 99%. Likewise, the training and recognition stages can be repeated to add new chemiresistor gas sensors in the node, add new nodes to the platform, and deploy the nodes in different scenarios.
  • Others:

    Author, as appears in the article.: Santos-Betancourt, Alejandro; Carlos Santos-Ceballos, Jose; Salehnia, Foad; Ayoub Alouani, Mohamed; Romero, Alfonso; Luis Ramirez, Jose; Vilanova, Xavier
    Department: Enginyeria Electrònica, Elèctrica i Automàtica
    URV's Author/s: Alouani, Mohamed Ayoub / Ramírez Falo, José Luis / Romero Nevado, Alfonso José / Salehnia, Foad / Santos Betancourt, Alejandro / Vilanova Salas, Javier
    Keywords: Air pollution monitoring Ammonia Emission Gas detectors Gas sensor Gas-sensing properties Graphen Iot Lab-made sensors Laboratory-made sensors Mixture of gases Multilayer perceptron Multilayer perceptron (mlp) Multivariate analysis Nitrogen Nitrogen dioxid Nitrogen dioxide Room-temperature Sensor arrays Sensor phenomena and characterization Sensor systems Sensors Temperature sensors Transient Wireless fidelity Wireless sensor networks
    Abstract: This work presents the design and setup of an IoT platform at level four of the technology readiness level (TRL-4) to detect, classify, and quantify pollutant gases. This study combines concepts such as wireless sensor networks (WSNs), arrays of sensors, and multivariate data analysis to interface different nanostructured chemiresistor gas sensors. The IoT platform consists of several gas sensor nodes (GSNs) with Wi-Fi capability to send data from a sensor array to a server and its user interface (UI). Each GSN interfaces one sensor array (up to four chemiresistor gas sensors and one temperature and humidity sensor). The server channels the data from the GSNs to the UI. The platform was set up following a two-stage methodology. First (training stage), sensor data were received, stored, and used to train different multilayer perceptrons (MLPs) artificial neural networks (ANNs). Second (recognition stage), models were implemented in the UI to classify and quantify the presence of pollutants. The platform was tested in laboratory conditions under exposure to nitrogen dioxide and ammonia at a different %RH. As a result, the platform improves the classification and quantification times compared with the single-sensor approach. In addition, the system was evaluated using a gas mixture of both gases, showing a classification accuracy exceeding 99%. Likewise, the training and recognition stages can be repeated to add new chemiresistor gas sensors in the node, add new nodes to the platform, and deploy the nodes in different scenarios.
    Thematic Areas: Astronomia / física Ciência da computação Ciências ambientais Ciências biológicas i Electrical and electronic engineering Engenharias ii Engenharias iii Engenharias iv Engineering, electrical & electronic Instrumentation Instruments & instrumentation Interdisciplinar Materiais
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    Author's mail: alfonsojose.romero@urv.cat joseluis.ramirez@urv.cat xavier.vilanova@urv.cat alejandro.santos@urv.cat foad.salehnia@urv.cat alejandro.santos@urv.cat mohamedayoub.alouani@urv.cat
    Author identifier: 0000-0003-3502-0813 0000-0001-8231-4019 0000-0002-6245-7933
    Record's date: 2024-11-23
    Papper version: info:eu-repo/semantics/publishedVersion
    Papper original source: Ieee Transactions On Instrumentation And Measurement. 73 2534511-
    APA: Santos-Betancourt, Alejandro; Carlos Santos-Ceballos, Jose; Salehnia, Foad; Ayoub Alouani, Mohamed; Romero, Alfonso; Luis Ramirez, Jose; Vilanova, Xav (2024). IoT Platform Enhanced With Neural Network for Air Pollutant Monitoring. Ieee Transactions On Instrumentation And Measurement, 73(), 2534511-. DOI: 10.1109/TIM.2024.3481592
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2024
    Publication Type: Journal Publications
  • Keywords:

    Electrical and Electronic Engineering,Engineering, Electrical & Electronic,Instrumentation,Instruments & Instrumentation
    Air pollution monitoring
    Ammonia
    Emission
    Gas detectors
    Gas sensor
    Gas-sensing properties
    Graphen
    Iot
    Lab-made sensors
    Laboratory-made sensors
    Mixture of gases
    Multilayer perceptron
    Multilayer perceptron (mlp)
    Multivariate analysis
    Nitrogen
    Nitrogen dioxid
    Nitrogen dioxide
    Room-temperature
    Sensor arrays
    Sensor phenomena and characterization
    Sensor systems
    Sensors
    Temperature sensors
    Transient
    Wireless fidelity
    Wireless sensor networks
    Astronomia / física
    Ciência da computação
    Ciências ambientais
    Ciências biológicas i
    Electrical and electronic engineering
    Engenharias ii
    Engenharias iii
    Engenharias iv
    Engineering, electrical & electronic
    Instrumentation
    Instruments & instrumentation
    Interdisciplinar
    Materiais
  • Documents:

  • Cerca a google

    Search to google scholar