Articles producció científica> Química Analítica i Química Orgànica

Navigating the complexity: Managing multivariate error and uncertainties in spectroscopic data modelling

  • Identification data

    Identifier: imarina:9393167
    Authors:
    Giussani, BarbaraGorla, GiuliaEzenarro, JokinRiu, JordiBoque, Ricard
    Abstract:
    Spectroscopy and chemometrics, supported by computer science, have yielded promising outcomes, as evidenced by trends observed in literature searches. However, while researchers meticulously construct chemometric models for exploratory, quantitation and classification purposes, the investigation of data quality, particularly error analysis, remains less frequent. Understanding and quantifying measurement errors is crucial for robust spectroscopic modeling and uncertainty estimation. By unraveling complexities related to multivariate errors and uncertainties in spectroscopic data, the scientific community is empowered to extract reliable information from spectroscopic analyses, paving the way for enhanced analytical practices. This review underscores the necessity for the scientific community to integrate error analysis and uncertainty estimation into multivariate analysis methods, offering tailored solutions for diverse data types and analysis objectives.
  • Others:

    Project code: 2021 SGR 00705
    Keywords: Uncertainty estimation Standard error Spectroscop Prediction uncertainty Partial least-squares Near-infrared spectroscopy Multivariate measurement error Multivariate classification Multivariate calibration Linear-regression Exploratory analysis Detection limits Classification methods Chemometric models Chemical-dat Analytical figures
    Record's date: 2024-12-07
    Papper version: info:eu-repo/semantics/publishedVersion
    Papper original source: Trac-Trends In Analytical Chemistry. 181 118051-
    APA: Giussani, Barbara; Gorla, Giulia; Ezenarro, Jokin; Riu, Jordi; Boque, Ricard (2024). Navigating the complexity: Managing multivariate error and uncertainties in spectroscopic data modelling. Trac-Trends In Analytical Chemistry, 181(), 118051-. DOI: 10.1016/j.trac.2024.118051
    Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
    Acronym: CHEMOSENS
    Publication Type: Journal Publications
    Project code 3: MICIU/AEI/10.13039/501100011033/
    Project code 4: PID2022-136649OBI00
    Author, as appears in the article.: Giussani, Barbara; Gorla, Giulia; Ezenarro, Jokin; Riu, Jordi; Boque, Ricard
    Department: Química Analítica i Química Orgànica
    URV's Author/s: Boqué Martí, Ricard / EZENARRO GARATE, JOKIN / Riu Rusell, Jordi
    Abstract: Spectroscopy and chemometrics, supported by computer science, have yielded promising outcomes, as evidenced by trends observed in literature searches. However, while researchers meticulously construct chemometric models for exploratory, quantitation and classification purposes, the investigation of data quality, particularly error analysis, remains less frequent. Understanding and quantifying measurement errors is crucial for robust spectroscopic modeling and uncertainty estimation. By unraveling complexities related to multivariate errors and uncertainties in spectroscopic data, the scientific community is empowered to extract reliable information from spectroscopic analyses, paving the way for enhanced analytical practices. This review underscores the necessity for the scientific community to integrate error analysis and uncertainty estimation into multivariate analysis methods, offering tailored solutions for diverse data types and analysis objectives.
    Program founding action 2: Contratos de personal investigador predoctoral en formación
    Thematic Areas: Spectroscopy Química Medicina ii Interdisciplinar Farmacia Environmental chemistry Engenharias iv Engenharias iii Engenharias ii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Chemistry, analytical Biotecnología Astronomia / física Analytical chemistry
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    Founding program action 4: Una manera de hacer Europa
    Author's mail: ricard.boque@urv.cat jordi.riu@urv.cat jokin.ezenarro@urv.cat
    Author identifier: 0000-0001-7311-4824 0000-0001-5823-9223 0000-0001-9234-7877
    Project code 2: 2021PMF-BS-12
    Founding program 2: Universitat Rovira i Virgili - Banco Santander
    Funding program: SGR - Departament de Recerca i Universitats, Generalitat de Catalunya
    Founding program 4: FEDER
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2024
    Funding program action: Chemometrics and Sensorics for Analytical Solutions
  • Keywords:

    Analytical Chemistry,Chemistry, Analytical,Environmental Chemistry,Spectroscopy
    Uncertainty estimation
    Standard error
    Spectroscop
    Prediction uncertainty
    Partial least-squares
    Near-infrared spectroscopy
    Multivariate measurement error
    Multivariate classification
    Multivariate calibration
    Linear-regression
    Exploratory analysis
    Detection limits
    Classification methods
    Chemometric models
    Chemical-dat
    Analytical figures
    Spectroscopy
    Química
    Medicina ii
    Interdisciplinar
    Farmacia
    Environmental chemistry
    Engenharias iv
    Engenharias iii
    Engenharias ii
    Ciências biológicas ii
    Ciências biológicas i
    Ciências ambientais
    Ciências agrárias i
    Ciência de alimentos
    Chemistry, analytical
    Biotecnología
    Astronomia / física
    Analytical chemistry
  • Documents:

  • Cerca a google

    Search to google scholar