Author, as appears in the article.: Cabanas-Tirapu, Oriol; Danus, Lluis; Moro, Esteban; Sales-Pardo, Marta; Guimera, Roger
Department: Enginyeria Química
URV's Author/s: Guimera Manrique, Roger / Sales Pardo, Marta
Keywords: City planning Gravitation Humans Machine learning Models, theoretical
Abstract: Modeling human mobility is critical to address questions in urban planning, sustainability, public health, and economic development. However, our understanding and ability to model flows between urban areas are still incomplete. At one end of the modeling spectrum we have gravity models, which are easy to interpret but provide modestly accurate predictions of flows. At the other end, we have machine learning models, with tens of features and thousands of parameters, which predict mobility more accurately than gravity models but do not provide clear insights on human behavior. Here, we show that simple machine-learned, closed-form models of mobility can predict mobility flows as accurately as complex machine learning models, and extrapolate better. Moreover, these models are simple and gravity-like, and can be interpreted similarly to standard gravity models. These models work for different datasets and at different scales, suggesting that they may capture the fundamental universal features of human mobility.
Thematic Areas: Antropologia / arqueologia Astronomia / física Biochemistry, genetics and molecular biology (all) Biochemistry, genetics and molecular biology (miscellaneous) Biodiversidade Biotecnología Chemistry (all) Chemistry (miscellaneous) Ciência da computação Ciências agrárias i Ciências ambientais Ciências biológicas i Ciências biológicas ii Ciências biológicas iii Educação física Engenharias iv Farmacia General biochemistry,genetics and molecular biology General chemistry General medicine General physics and astronomy Geociências Interdisciplinar Matemática / probabilidade e estatística Materiais Medicina i Medicina ii Medicina iii Medicina veterinaria Multidisciplinary Multidisciplinary sciences Nutrição Odontología Physics and astronomy (all) Physics and astronomy (miscellaneous) Planejamento urbano e regional / demografia Psicología Química Saúde coletiva Zootecnia / recursos pesqueiros
licence for use: https://creativecommons.org/licenses/by/3.0/es/
Author's mail: marta.sales@urv.cat roger.guimera@urv.cat
Author identifier: 0000-0002-8140-6525 0000-0002-3597-4310
Record's date: 2025-02-19
Paper version: info:eu-repo/semantics/publishedVersion
Paper original source: Nature Communications. 16 (1): 1336-
APA: Cabanas-Tirapu, Oriol; Danus, Lluis; Moro, Esteban; Sales-Pardo, Marta; Guimera, Roger (2025). Human mobility is well described by closed-form gravity-like models learned automatically from data. Nature Communications, 16(1), 1336-. DOI: 10.1038/s41467-025-56495-5
Licence document URL: https://repositori.urv.cat/ca/proteccio-de-dades/
Entity: Universitat Rovira i Virgili
Journal publication year: 2025
Publication Type: Journal Publications