Articles producció científica> Química Analítica i Química Orgànica

Emission factor estimation of ca. 160 emerging organic microcontaminants by inverse modeling in a Mediterranean river basin (Llobregat, NE Spain)

  • Datos identificativos

    Identificador: PC:1164
    Autores:
    Nadal, M.Banjac, Z.Ginebreda, A.Kuzmanovic, M.Marcé, R.Riera, J.M.Barceló, D.
    Resumen:
    Starting from measured river concentrations, emission factors of 158 organic compounds out of 199 analyzed belonging to different groups of priority and emerging contaminants [pesticides (25), pharmaceuticals and hormones (81), perfluoroalkyl substances (PFASs) (18), industrial compounds (12), drugs of abuse (8) and personal care products (14)] have been estimated by inverse modeling. The Llobregat river was taken as case study representative of Mediterranean rivers. Industrial compounds and pharmaceuticals are the dominant groups (range of 104mg·1000inhab-1·d-1). Personal care products, pesticides, PFASs and illegal drugs showed a load approximately one order of magnitude smaller. Considered on a single compound basis industrial compounds still dominate (range of ca. 103mg·1000inhab-1·d-1) over other classes. Generally, the results are within the range when compared to previously published estimations for other river basins. River attenuation expressed as the percentage fraction of microcontaminants eliminated was quantified. On average they were around 60-70% of the amount discharged for all classes, except for PFASs, that are poorly eliminated (ca. 20% on average). Uncertainties associated with the calculated emissions have been estimated by Monte-Carlo methods (15,000 runs) and typically show coefficients of variation of ca. 120%. Sensitivities associated with the various variables involved in the calculations (river discharge, river length, concentration, elimination constant, hydraulic travel time and river velocity) have been assessed as well. For the intervals chosen for the different variables, all show sensitivities exceeding unity (1.14 to 3.43), tending to amplify the variation of the emission. River velocity and basin length showed the highest sensitivity v
  • Otros:

    Autor según el artículo: Nadal, M. Banjac, Z. Ginebreda, A. Kuzmanovic, M. Marcé, R. Riera, J.M. Barceló, D.
    Departamento: Química Analítica i Química Orgànica
    Autor/es de la URV: NADAL LOMAS, MARTÍ Banjac, Z. Ginebreda, A. Kuzmanovic, M. Marcé, R. Riera, J.M. Barceló, D.
    Palabras clave: Emission factors Inverse modeling Llobregat river
    Resumen: Starting from measured river concentrations, emission factors of 158 organic compounds out of 199 analyzed belonging to different groups of priority and emerging contaminants [pesticides (25), pharmaceuticals and hormones (81), perfluoroalkyl substances (PFASs) (18), industrial compounds (12), drugs of abuse (8) and personal care products (14)] have been estimated by inverse modeling. The Llobregat river was taken as case study representative of Mediterranean rivers. Industrial compounds and pharmaceuticals are the dominant groups (range of 104mg·1000inhab-1·d-1). Personal care products, pesticides, PFASs and illegal drugs showed a load approximately one order of magnitude smaller. Considered on a single compound basis industrial compounds still dominate (range of ca. 103mg·1000inhab-1·d-1) over other classes. Generally, the results are within the range when compared to previously published estimations for other river basins. River attenuation expressed as the percentage fraction of microcontaminants eliminated was quantified. On average they were around 60-70% of the amount discharged for all classes, except for PFASs, that are poorly eliminated (ca. 20% on average). Uncertainties associated with the calculated emissions have been estimated by Monte-Carlo methods (15,000 runs) and typically show coefficients of variation of ca. 120%. Sensitivities associated with the various variables involved in the calculations (river discharge, river length, concentration, elimination constant, hydraulic travel time and river velocity) have been assessed as well. For the intervals chosen for the different variables, all show sensitivities exceeding unity (1.14 to 3.43), tending to amplify the variation of the emission. River velocity and basin length showed the highest sensitivity value. Even considering the limitations of the approach used, inverse modeling can provide a useful tool for management purposes facilitating the quantification of release rates of chemicals into the aquatic environment. © 2015 The Authors.
    Grupo de investigación: Laboratori de Toxicologia i Salut Mediambiental
    Áreas temáticas: Química Química Chemistry
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 0048-9697
    Identificador del autor: 0000-0002-0217-4827 0000-0001-8195-8576 n/a n/a 0000-0002-7416-4652 n/a n/a
    Fecha de alta del registro: 2015-04-27
    Página final: 252
    Volumen de revista: 520
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Enlace a la fuente original: https://www.sciencedirect.com/science/article/pii/S0048969715003307?via%3Dihub
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    DOI del artículo: 10.1016/j.scitotenv.2015.03.055
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2015
    Página inicial: 241
    Tipo de publicación: Article Artículo Article
  • Palabras clave:

    Aigua -- Contaminació -- Anàlisi
    Llobregat (Catalunya : Riu) -- Contaminació
    Emission factors
    Inverse modeling
    Llobregat river
    Química
    Química
    Chemistry
    0048-9697
  • Documentos:

  • Cerca a google

    Search to google scholar